News

CEST researchers receive significant LUMI supercomputing resources

Two machine learning projects were granted competitive LUMI supercomputing time and resources
White fox walking in winter landscape, technological elements in background with text LUMI

Two recent applications by researchers from the CEST (Computational Electronic Structure Theory) research group for computing resources provided by the LUMI supercomputer were successfully granted. The CEST group, led by Prof. Patrick Rinke, applies machine learning and computation to solve pertinent problems in physics, chemistry, and materials science.

Portrait of woman in green shirt
CEST researcher H. Sandström

The first of the two successful projects, Expanding Property Prediction and Machine Learning Models for Atmospheric Science (EXPAND ATMOS), is led by researcher Hilda Sandström with the help of doctoral student Lucas Bandeira. EXPAND ATMOS investigates particle formation in the atmosphere and how these particles affect the climate and air quality. These tiny particles form as a result of a complex web of chemical reactions and processes involving emissions from human activities like industry and agriculture. However, the details of these reactions remain largely unknown. To unravel this mystery, scientists turn to computational models. These models help trace how human activities impact particle formation in the atmosphere. Traditional modelling methods demand immense computational resources, often to an impractical extent. By leveraging machine learning, EXPAND ATMOS creates models that will open new ways of doing research in atmospheric science that were previously impossible. Developing these machine learning tools requires substantial resources, which are now accessible thanks to LUMI. With access to LUMI, we anticipate significant advances in understanding and mitigating the impacts of atmospheric particles on our climate and on air quality. 

Portrait photo of man with glasses in front of tree
CEST researcher O. Krejci

The second granted project, named Active Learning for Vibrational Spectroscopy (ALVS) is led by researcher Ondrej Krejci with the help of doctoral student Nitik Bhatia. Together, they apply machine learning to help investigate heterogenous catalysis of green fuels such as methane and methanol. This type of catalysis is an important industrial process to produce useful chemical compounds including green fuels and to simultaneously convert unwanted chemicals like carbon dioxide. In this context, it is essential for researchers to understand the catalyst’s behaviour and working mechanism. Vibrational spectroscopy is one of a few characterization techniques available that can provide in-situ and real-time information on catalyst operation. The goals of ALVS will be achieved with the help of a novel machine learning model for efficiently predicting vibrational spectra. The ALVS model will facilitate unprecedently fast identification of reaction intermediates, reaction pathways and active components of the catalysts. Developing such machine-learning models, however, requires significant amounts of training data, which will be generated computationally with the ALVS LUMI resources. The gained knowledge will help us design better catalysts, improve green fuel production and thus contribute to carbon dioxide mitigation.

Both projects directly benefit from access to supercomputing resources. Thanks to the LUMI Extreme Scale Access project call, EXPAND ATMOS and ALVS have received the necessary resources and access to LUMI, one of the top five supercomputers in the world. Europe’s flagship computer also provides state-of-the-art infrastructure needed to conduct this type of research at an unprecedented scale. The two selected projects are two out of only six Finnish projects that were granted as part of this call. 

Contact and more information

Hilda Sandström

Ondrej Krejci

  • Updated:
  • Published:
Share
URL copied!

Read more news

SemiSummer 2026. Apply for semiconductor summer jobs. Logos of companies and Aalto University. Join us now.
Cooperation Published:

The semiconductor sector jobs open in research groups

Semi-Summer 2026 programme will provide an opportunity to gain the skills needed in a growing and international semiconductor sector.
Two men in suits sit at a table with documents. Behind them is a mirror and a vase with flowers.
Cooperation Published:

New cooperation agreement between the City of Helsinki and Aalto University to strengthen a sustainable, vibrant and knowledgeable city

The main themes of the cooperation are vitality, innovations and entrepreneurship, as well as research cooperation and knowledgeable labour, drawing heavily on the research and education expertise of the university.
People sitting at tables with laptops and coffee cups, engaging in conversation.
Research & Art, Studies Published:

Aalto Inventors innovation training coming for hydrogen, quantum and microelectronics researchers this spring

Connect with industry and academic thought-leaders and gain widely applicable skills in communication, intellectual property, and business.
Two people in blue shirts are looking at a laptop screen in an industrial setting.
Cooperation, Research & Art Published:

Seizing opportunities — Vuong Vo’s path led through Aalto University and VTT to build the protein factory of the future

Vuong Vo's path led through Aalto University and VTT to a startup, where he is helping build the protein factory of the future.