News

CEST researchers pave the way for calculating circular dichroism (CD) spectra more efficiently

Researchers led by Xi Chen have published a new study to calculate CD spectra of metal nanoclusters in an improved manner
A graphic showing CD spectra of a metal nanocluster
Graphic taken from Makkonen et al. J. Chem. Phys. 154, 114102 (2021)
A photo showing researcher Esko Makkonen
First author Esko Makkonen

Members of the CEST group published a recent paper introducing a novel method to calculate CD spectra in the open source GPAW code. The publication shows that the implemented approach is more efficient than the commonly used linear-response method and can easily calculate CD spectra of nanoscale systems, such as hybrid silver clusters composed of over 1000 atoms.

Recording CD spectra is a very powerful method to study the chiral optical properties and detect small structure changes in chiral molecules, DNA, proteins and nanoclusters, to name a few. However, the computational cost of commonly used linear-response time-dependent density functional theory (TDDFT) methodology increases drastically with the system size under observation, and can typically only be applied to small systems. To overcome this challenge, researchers Esko MakkonenTuomas RossiPatrick Rinke and Xi Chen worked with collaborators from Jyväskylä, Spain and Colombia to implement a more efficient approach based on real-time TDDFT to calculate CD spectra. The published code offers both linear combination of atomic orbitals (LCAO) and grid modes. The LCAO mode is beneficial for large systems, while the grid mode is suitable for small molecules and benchmark purposes, thus making this new method extremely versatile.

The authors tested this new implementation on various systems. In all test cases, the calculations show high efficiency and agree well with experimental results and reference computations. Driven by this initial success, the group is now ready to study many more chiral nanoclusters. The aim of this work is to discover the origin of chiral optical properties in nanoclusters, and design metal clusters which are useful as chiral sensors.

This paper is published in The Journal of Chemical Physics. https://doi.org/10.1063/5.0038904

  • Published:
  • Updated:

Read more news

Group Picture
Cooperation Published:

DeployAI Partners Gather for Heart Beat Meeting in Helsinki

The European DeployAI project's partners gathered for the Heart Beat meeting hosted by Aalto University Executive Education in Helsinki.
Professori Maria Sammalkorpi
Research & Art Published:

Get to know us: Associate Professor Maria Sammalkorpi

Sammalkorpi received her doctorate from Helsinki University of Technology 2004. After her defence, she has worked as a researcher at the Universities of Princeton, Yale and Aalto.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2024

Computer scientists in ICML 2024
Photo: Tima Miroschnichenko, Pexels.
Press releases Published:

In low-hierarchy organisations, even key policy issues are discussed in Slack

In a recent study, Aalto University alumn Lauri Pietinalho, a visiting scholar at New York University's Stern School of Business, and Frank Martela, an assistant professor at Aalto University, investigated how low-hierarchy organisations deal with shared policies in confrontational situations and how authority functions within them.