News

Building an understanding of quantum turbulence from the ground up

Researchers show how energy disappears in quantum turbulence. The discovery paves way for a better understanding of turbulence in scales ranging from the microscopic to the planetary
Lähikuva superpakastimesta eli kryostaatista
The researchers used a unique rotating cryostat in their study. Photo: Mikko Raskinen/Aalto University.

Most people only encounter turbulence as an unpleasant feature of air travel, but it’s also a notoriously complex problem for physicists and engineers. The same forces that rattle planes are swirling in a glass of water and even in the whorl of subatomic particles. Because turbulence involves interactions across a range of distances and timescales, the process is too complicated to be solved through calculation or computational modelling – there’s simply too much information involved.

Scientists have attempted to tackle the issue by studying the turbulence that occurs in superfluids, which is formed by tiny identical whirls called quantized vortices. A key question is how turbulence happens on the quantum scale and how is it linked to turbulence at larger scales. 

Researchers at Aalto University have brought that goal closer with a new study of quantum wave turbulence. Their findings, published in Nature Physics, demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales.

How energy disappears

The team of researchers, led by Senior Scientist Vladimir Eltsov, studied turbulence in the Helium-3 isotope in a unique, rotating ultra-low temperature refrigerator in the Low Temperature Laboratory at Aalto, which belongs to the national OtaNano research infrastructure. They found that at microscopic scales so-called Kelvin waves act on individual vortices by continually pushing energy to smaller and smaller scales – ultimately leading to the scale at which dissipation of energy takes place.

‘The question of how energy disappears from quantized vortices at ultra-low temperatures has been crucial in the study of quantum turbulence. Our experimental set-up is the first time that the theoretical model of Kelvin waves transferring energy to the dissipative length scales has been demonstrated in the real world,’ says Jere Mäkinen, the lead author of the study and a Postdoctoral Researcher at Aalto.

Planes, trains and automobiles

In the future, an improved understanding of turbulence beginning on the quantum level could allow for  improved engineering in domains where the flow and behaviour of fluids and gases like water and air is a key question.

‘Our research with the basic building blocks of turbulence might help point the way to a better understanding of interactions between different length scales in turbulence. Understanding that in classical fluids will help us do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence,’ Mäkinen says.

For now, Eltsov, Mäkinen, and others plan to go where the science takes them. Right now, their goal is to manipulate a single quantized vortex using nano-scale devices submerged in superfluids.

More information:

  • Published:
  • Updated:

Read more news

Kuvituskuva tekoälystä. Kuvassa viivojen yhdistämiä korkeita rakennuksia
Research & Art Published:

Aalto computer scientists in AIES 2024

Department of Computer Science paper accepted to the Conference on AI, Ethics and Society
A new eco-friendly method to modify cellulose for sustainable materials
Press releases, Research & Art Published:

A new eco-friendly method to modify cellulose for sustainable materials

Researchers at Aalto University have developed a method to modify cellulose, reducing toxic solvent use by over ten times compared to traditional methods. This innovation has potential applications in eco-friendly nanocomposites, cellulose-based membranes, and biomedical devices, supporting sustainable material development.
Läppäri. Kuva: Kalle Kataila
Research & Art Published:

The doctoral thesis encourages the integration of analytics into the company’s strategy

The management of analytics and the development of employees' analytics skills are needed to maximize the benefits derived from analytics
The key research device at the ARotor laboratory in Otaniemi is a measurement and grinding machine with a paper machine roll.
Research & Art Published:

'It is just not possible' pushes mechanical engineering researchers towards more ambitious goals

Long-term cooperation and work in Valmet’s Veturi projects produce results for the needs of heavy industry.