News

Breakthrough achieved in improving the ionic conductivity of fuel cell materials

Ceramic fuel cell technology has a tremendous potential for clean energy production.
Fuel cell group researchers of New Energy Technologies Group at Aalto University (Left to right): Sami Jouttijärvi (Doctoral student), Dr. Muhammad Imran Asghar (Adjunct Professor), Monica Lin (Masters student), Riina Jokiranta (Masters student), Eleonora Hochreiner (Masters student) and Julie Tavernier (Masters student). Photo: Alpi Rimppi.

The researchers at Aalto University developed synthesis and processing routes for development of ceramic nanocomposite materials, which resulted in a breakthrough in improving the ionic conductivity of the fuel cell electrolyte materials.

A record high ionic conductivity of 0.55 S/cm at 550oC has been achieved at Aalto University. Fuel cells fabricated using these nanocomposite materials produced an outstanding performance of 1.06 W/cm2.

Ceramic fuel cell technology has a tremendous potential for sustainable clean energy production. With the help of these superionic nanocomposite materials, the operating temperature of the fuel cells can be significantly reduced. This low temperature operation helps in improving the long-term stability of the devices.

'With the help of these superionic materials, the losses due to ionic transport in the electrolyte layer are dramatically reduced, which makes it possible to produce fuel cells performing over 1W/cm2. We envision to reach a fuel cell performance of 2.5 W/cm2 by depositing these potential materials with modern printing method', Docent, Dr. Muhammad Imran Asghar says.

This work is a part of an EU-Indigo project funded by the Academy of Finland. The partners in the project include Aalto University, University of Oslo, University of Aveiro, Indian Institute of Technology – Delhi, CGRI – CSIR Kolkata and VESTEL Turkey.

The synthesized superionic materials were characterized with various microscopic (SEM, TEM), spectroscopic techniques (XRD, Raman, FTIR) and other analyses (BET analysis, DSC, TGA) techniques. The high performance fuel cells were characterized using electrochemical impedance spectroscopy and voltage/current-density measurements.

Details regarding the results can be found in the articles published in International Journal of Hydrogen energy and Frontiers of Chemical Science and Engineering

Research articles:
Muhammad Imran Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter Lund. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials. Frontiers of Chemical Science and Engineering, in press, 2017. DOI: 10.1007/s11705-017-1642-2

Ieeba Khan, Muhammad Imran Asghar, Peter Lund, Suddhasatwa Basu. High conductive (LiNak)2CO3-Ce0.85Sm0.15O2 electrolyte compositions for IT-SOFC applications. International Journal of Hydrogen Energy, in press, 2017. https://doi.org/10.1016/j.ijhydene.2017.05.152

Contact:
Dr. Muhammad Imran Asghar (Adjunct Professor)
New Energy Technologies Group
Aalto University, Dept. of Applied Physics
tel: +358 50 344 1659
[email protected]

  • Published:
  • Updated:

Read more news

image of a wooden pillar from little finlandia and the text time out
Research & Art Published:

Aalto University shakes up construction practices at the New European Bauhaus Festival in Brussels

The exhibition Time Out! will be on show in Brussels from 9 to 13 April 2024 as part of the NEB Festival.
Two of the awardees and their robotic arm all holding colorful mugs. Aalto Open Science Award, Honorary mention.
Awards and Recognition, Research & Art Published:

Aalto Open Science Award third place awardee 2023 – Intelligent Robotics Research Group with the Robotic Manipulation of Deformable Objects project

We interviewed the Intelligent Robotics Research Group with the Robotic Manipulation of Deformable Objects project, 3rd place awardees of the first Aalto Open Science Award.
Five Aalto University students around a table
Research & Art Published:

Read the Qual+ Newsletter

We are excited to welcome you to the second Qual+ Newsletter and continue bringing you new ways of looking at methods within management studies.
Nanoselluloosaa
Cooperation, Research & Art Published:

Aalto focuses on pulp research to boost a shift to a low carbon economy

A ground-breaking research programme together with universities, research organizations, and companies is established to reform the traditional pulping processes. As the target of the programme is industrial scale relevance, it requires a pool of scientists and the industry to work together internationally.