News

Breakthrough achieved in improving the ionic conductivity of fuel cell materials

Ceramic fuel cell technology has a tremendous potential for clean energy production.
Fuel cell group researchers of New Energy Technologies Group at Aalto University (Left to right): Sami Jouttijärvi (Doctoral student), Dr. Muhammad Imran Asghar (Adjunct Professor), Monica Lin (Masters student), Riina Jokiranta (Masters student), Eleonora Hochreiner (Masters student) and Julie Tavernier (Masters student). Photo: Alpi Rimppi.

The researchers at Aalto University developed synthesis and processing routes for development of ceramic nanocomposite materials, which resulted in a breakthrough in improving the ionic conductivity of the fuel cell electrolyte materials.

A record high ionic conductivity of 0.55 S/cm at 550oC has been achieved at Aalto University. Fuel cells fabricated using these nanocomposite materials produced an outstanding performance of 1.06 W/cm2.

Ceramic fuel cell technology has a tremendous potential for sustainable clean energy production. With the help of these superionic nanocomposite materials, the operating temperature of the fuel cells can be significantly reduced. This low temperature operation helps in improving the long-term stability of the devices.

'With the help of these superionic materials, the losses due to ionic transport in the electrolyte layer are dramatically reduced, which makes it possible to produce fuel cells performing over 1W/cm2. We envision to reach a fuel cell performance of 2.5 W/cm2 by depositing these potential materials with modern printing method', Docent, Dr. Muhammad Imran Asghar says.

This work is a part of an EU-Indigo project funded by the Academy of Finland. The partners in the project include Aalto University, University of Oslo, University of Aveiro, Indian Institute of Technology – Delhi, CGRI – CSIR Kolkata and VESTEL Turkey.

The synthesized superionic materials were characterized with various microscopic (SEM, TEM), spectroscopic techniques (XRD, Raman, FTIR) and other analyses (BET analysis, DSC, TGA) techniques. The high performance fuel cells were characterized using electrochemical impedance spectroscopy and voltage/current-density measurements.

Details regarding the results can be found in the articles published in International Journal of Hydrogen energy and Frontiers of Chemical Science and Engineering

Research articles:
Muhammad Imran Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter Lund. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials. Frontiers of Chemical Science and Engineering, in press, 2017. DOI: 10.1007/s11705-017-1642-2

Ieeba Khan, Muhammad Imran Asghar, Peter Lund, Suddhasatwa Basu. High conductive (LiNak)2CO3-Ce0.85Sm0.15O2 electrolyte compositions for IT-SOFC applications. International Journal of Hydrogen Energy, in press, 2017. https://doi.org/10.1016/j.ijhydene.2017.05.152

Contact:
Dr. Muhammad Imran Asghar (Adjunct Professor)
New Energy Technologies Group
Aalto University, Dept. of Applied Physics
tel: +358 50 344 1659
[email protected]

  • Published:
  • Updated:
Share
URL copied!

Related news

Large arena filled with a crowd watching a game of DOTA2 projected on big screens
Research & Art Published:

Digital athletics in analogue stadiums

Researchers study why people watch computer gamers live
Julia Lohmann's Department of Seaweed at WEF. Photo: Mikko Raskinen
Research & Art Published:

Julia Lohmann: ‘We know too much and do too little.’

Lohmann’s magnificent seaweed pavilion encourages leaders to make difficult decisions and establish a ‘do-tank’ way of collaborating at the 50th World Economic Forum in Davos.
Students in the Aalto University Learning Centre / photo by Unto Rautio
Research & Art Published:

Tutkain 2020-2022 project provides Finnish digital newspapers and magazines for research use

Researchers will be able to use Finnish newspapers and magazines from 1930–2018 digitised by the National Library.
Metsähovi Radio Observatory, Joni Tammi
Research & Art Published:

Three fascinating facts about space – which mystery would space researcher Joni Tammi like to understand?

When Joni Tammi was on the first grade, he gave his first school presentation about stars. It started a journey that led to a career in space research. But what was the brainwave he got during his studies on a course taught by astronomer Esko Valtaoja?