News

Benchmarking Core Excitations

Table of contents figure
The accuracy of high-level eigenvalue self-consistent GW calculations (evGW0) for 1s core levels of organic molecules is assessed

The GW Green's function method has become a popular tool to compute valence excitations for a wide range of substances and materials. In this article, we test the GW method on X-ray photoelectron spectra. We present a benchmark study for 65 molecular 1s excitations. Our absolute and relative GW core-level binding energies agree within 0.3 and 0.2 eV with experiment, respectively. More information can be found in

Accurate Absolute and Relative Core-Level Binding Energies from GW, D. Golze, L, Keller, and P. Rinke, J. Phys. Chem. Lett. 11, 1840 (2020)

  • Published:
  • Updated:
Share
URL copied!

Related news

UNITE! workshop at Aalto University in February 2020. Photo: Mikko Raskinen.
Research & Art Published:

Funding for project to design future universities

Europe-wide collaboration aims to make research more open and diverse
Kuva: Adolfo Vera.
Research & Art Published:

Can EEG and machine learning predict respiratory difficulties in Covid19 patients?

Researchers are planning to investigate severe respiratory problems in coronavirus patients with EEG and machine learning, to help to predict the need of intensive care treatment of other COVID19 patients.
Photo: Aalto University
Research & Art Published:

Thermophotonics work receives EU funding

Exploratory research into waste-energy recovery awarded Horizon 2020 grant
Kuvassa vihreällä taustalla kuvat Matti Rossista ja Markku Kaustiasta
Research & Art Published:

Will the future bring pyramid scams like OneCoin?

Professors Matti Rossi and Markku Kaustia will discuss the opportunities and challenges of cryptocurrencies.