News

Atomic-level understanding of materials facilitates product development

Project aims to achieve scientific breakthroughs and create new business.
Kiteistä sellulosaa atomitasolla, kuva: Antti Karttunen
The picture shows crystalline cellulose at the atomic level. Picture: Antti Karttunen, CC BY-SA 4.0.

Aalto University, Kemira, Vaisala, Canatu, Elastopoli and Damicon Kraa are participating in the Molecular Modelling in Industrial Research and Development (MM-IRD) project. The purpose of the project is to carry out research and use molecular modelling in product and innovation development.

Molecular modelling is an area of chemistry in which researchers use computational methods to determine what happens in chemical phenomena at the atomic level.

‘At Aalto, we create a model that represents the phenomenon to be studied. A model can tell us what will happen when a sensor material reacts with a gas molecule, for example. Visual models help companies see what actually happens at the atomic level,’ Assistant Professor Antti Karttunen says.

Modelling can be used in two ways.

‘Modelling helps us explain what is taking place in an experimental observation. It can also be used to predict what will happen in laboratory experiments.’

Molecular modelling saves both time and money, and it is a safe research method. The model allows product developers to test dozens or hundreds of different materials and then select the best and most promising for experimental work.

If the pharmaceutical industry is excluded, molecular modelling has had a very small role in Finnish product development. In the rest of the world, molecular modelling is an important part of product development in the chemical and technology industries. With a systematic and long-term approach, Finnish industrial companies could use molecular modelling to boost their product development processes. Significant new business opportunities could also emerge.

Canatu is involved in the project to develop components that will maximise the electrical conductivity of carbon nanobud networks in all environments.

‘Carbon nanobuds have numerous applications in a wide range of sectors. Their ultimate electrical conductivity is useful in heating element applications, which Canatu develops for the automotive industry. They ensure, among other things, that advanced driver assistance systems work in all weather conditions,’ CTO Ilkka Varjos says.

Elastopoli Oy has been developing its patented biocomposite technology since 2007.

‘Our aim is to use molecular modelling to develop a next-generation biocomposite that is ecological, customizable and easy to process,’ CEO Markku Nikkilä says.

Kemira hopes that the project will support its product development. ‘Our goal is to model how various product features will affect the functionality of products in their end-use applications. We believe that we will be able to use modelling to shorten the product development time of mixtures, solutions and dispersions,’ says Annaleena Kokko, Manager R&D from Kemira.

Vaisala develops measurement products for demanding weather, environmental and industrial applications.

‘We are constantly developing new measurement technologies to provide our customers with reliable and accurate measurement data, even in demanding environments. Molecular modelling provides us with the opportunity to gain a profound understanding of the phenomena behind sensor responses. As a result, molecular modelling opens the way for new inventions,’ says Liisa Åström, Vice President, Products and Systems, Vaisala Industrial Measurements.

The MM-IRD project began in January and it is funded by Business Finland. At Aalto University, research is being carried out by the research groups of Antti Karttunen, Maria Sammalkorpi and Kari Laasonen.

Further information:

Assistant Professor Antti Karttunen
[email protected]
tel. +358 50 347 3475

  • Published:
  • Updated:
Share
URL copied!

Read more news

Dr. Swarnalok De and logos of the Finnish Cultural Foundation, Aalto University and MMD group
Research & Art Published:

Dr. Swarnalok De receives a one-year grant from the Finnish Cultural Foundation

Awarded for research on the development of wearable healthcare sensors for autonomous health monitoring of the aging population
Unite! White paper - a new university open science and innovation governance model and policy for a sustainable world
Cooperation, University Published:

Unite!’s pathway for the management of open science and innovation in the European Universities Alliances

Unite! presents a new university open science and innovation governance model and five policy recommendations.
The magnetic properties of a material can affect how it interacts with light.
Press releases, Research & Art Published:

A new optical metamaterial makes true one-way glass possible

Researchers have discovered how to make a new optical metamaterial that would underpin a variety of new technologies.
Mikko Alava ja kolme muuta tutkimusryhmän jäsentä kuvattuna teknisen laitteen äärellä.
Research & Art Published:

Significant grants for science from the Finnish Cultural Foundation

A total of thirty individuals and research groups from Aalto University received grants from the Finnish Cultural Foundation for science and art. Professors Harri Lipsanen and Zhipei Sun and their team, were awarded a large grant to develop electronic components mimicking the structure and function of the human brain. Among the grantees is also Professor Mikko Alava, whose team is developing water-resistant foams as substitutes for plastic using AI-based methods.