News

Atomic-level understanding of materials facilitates product development

Project aims to achieve scientific breakthroughs and create new business.
Kiteistä sellulosaa atomitasolla, kuva: Antti Karttunen
The picture shows crystalline cellulose at the atomic level. Picture: Antti Karttunen, CC BY-SA 4.0.

Aalto University, Kemira, Vaisala, Canatu, Elastopoli and Damicon Kraa are participating in the Molecular Modelling in Industrial Research and Development (MM-IRD) project. The purpose of the project is to carry out research and use molecular modelling in product and innovation development.

Molecular modelling is an area of chemistry in which researchers use computational methods to determine what happens in chemical phenomena at the atomic level.

‘At Aalto, we create a model that represents the phenomenon to be studied. A model can tell us what will happen when a sensor material reacts with a gas molecule, for example. Visual models help companies see what actually happens at the atomic level,’ Assistant Professor Antti Karttunen says.

Modelling can be used in two ways.

‘Modelling helps us explain what is taking place in an experimental observation. It can also be used to predict what will happen in laboratory experiments.’

Molecular modelling saves both time and money, and it is a safe research method. The model allows product developers to test dozens or hundreds of different materials and then select the best and most promising for experimental work.

If the pharmaceutical industry is excluded, molecular modelling has had a very small role in Finnish product development. In the rest of the world, molecular modelling is an important part of product development in the chemical and technology industries. With a systematic and long-term approach, Finnish industrial companies could use molecular modelling to boost their product development processes. Significant new business opportunities could also emerge.

Canatu is involved in the project to develop components that will maximise the electrical conductivity of carbon nanobud networks in all environments.

‘Carbon nanobuds have numerous applications in a wide range of sectors. Their ultimate electrical conductivity is useful in heating element applications, which Canatu develops for the automotive industry. They ensure, among other things, that advanced driver assistance systems work in all weather conditions,’ CTO Ilkka Varjos says.

Elastopoli Oy has been developing its patented biocomposite technology since 2007.

‘Our aim is to use molecular modelling to develop a next-generation biocomposite that is ecological, customizable and easy to process,’ CEO Markku Nikkilä says.

Kemira hopes that the project will support its product development. ‘Our goal is to model how various product features will affect the functionality of products in their end-use applications. We believe that we will be able to use modelling to shorten the product development time of mixtures, solutions and dispersions,’ says Annaleena Kokko, Manager R&D from Kemira.

Vaisala develops measurement products for demanding weather, environmental and industrial applications.

‘We are constantly developing new measurement technologies to provide our customers with reliable and accurate measurement data, even in demanding environments. Molecular modelling provides us with the opportunity to gain a profound understanding of the phenomena behind sensor responses. As a result, molecular modelling opens the way for new inventions,’ says Liisa Åström, Vice President, Products and Systems, Vaisala Industrial Measurements.

The MM-IRD project began in January and it is funded by Business Finland. At Aalto University, research is being carried out by the research groups of Antti Karttunen, Maria Sammalkorpi and Kari Laasonen.

Further information:

Assistant Professor Antti Karttunen
antti.karttunen@aalto.fi
tel. +358 50 347 3475

  • Updated:
  • Published:
Share
URL copied!

Read more news

Doctoral researcher Giiguulen Enkhsaikhan in a laboratory environment
Research & Art Published:

Giiguulen Enkhsaikhan: More sustainable textiles with hemicellulose

Aalto University's doctoral researcher's presentation of hemicellulose won the third prize in the Marcus Wallenberg Young Researchers’ Challenge event in November
Two world maps showing trends in income inequality from 1990 to 2023, with national and subnational data in different colours.
Press releases, Research & Art Published:

Subnational income inequality revealed: Regional successes may hold key to addressing widening gap globally

Income inequality is one of the most important measures of economic health, social justice and quality of life
Research & Art Published:

Changes to education information in ACRIS

We are updating how education information is managed in Aalto University's research information system, ACRIS. The old source data for education information will be removed to help eliminate potential duplicate entries.
A modern school building with a playground, surrounded by greenery under a partly cloudy sky.
Press releases, Research & Art Published:

Study: Wood is a more cost-effective building material than concrete when emissions are monetized

The costs of the wood-built school and sports hall in Myrskylä were compared to a reinforced concrete alternative — and wood proved clearly more economical when environmental impacts were assigned a monetary value.