News

Aalto University and VTT collaborate to develop novel textile fibres

Aalto University and VTT are taking Finnish fibre technologies towards industrial scale manufacturing in their joint TeKiDe project.

New textile fibers produced from recycled cotton garments with Ioncell -process. Design project by students Eugenia Smirnova (Aalto University School of Arts, Design and Architecture) and Zhen Zeng (Aalto University School of Chemical Technology). Photo by Eeva Suorlahti / Aalto University.

The project develops particularly the carbamate, BioCelSol and Ioncell-F technologies that are more environmentally friendly and safer than the production method of viscose, based on the use of carbon disulfide. The project is funded by the Helsinki-Uusimaa Regional Council's Structural Fund for Mainland Finland programme, the City of Espoo, VTT Technical Research Centre of Finland Ltd and Aalto University.

The test runs will be performed at VTT's Bioruukki piloting centre in Espoo, where a piloting environment based on wet spinning technique has been built during spring.

A single piloting process includes several steps: collection of waste textiles; removal of mechanical parts, such as buttons and zippers; grinding of textiles; chemical pretreatment; cellulose modification (such as carbamation), dissolution in sodium zincate; filtering of the solution; air removal; spinning; post-processing of the fibre (such as bleaching) and drying.  

The TeKiDe project began last autumn and will be completed by the end of 2018.

Ioncell-F technology

In its own part of the project, the Aalto University prepares for the scale-up of the Ioncell-F process. The Ioncell-F technology, based on direct dissolution of cellulose, has been developed in collaboration between Aalto University and the University of Helsinki. The process uses dry-jet wet spinning technique, which gives excellent tenacity to fibres. The most important part of the project is to develop a recovery system that would enable closed water and chemical loops in the process. The project will select equipment suited for the process and examine in which respects equipment used for other technologies developed during the project could be used for the piloting of the Ioncell-F process as well. The scale-up and piloting will not be implemented as part of this project.

Carbamate and BioCelSol technologies

In the first trial, approximately 150 kg of cellulose carbamate fibre will be produced from recycled cotton using carbamate technology owned by VTT. Dissolution of cellulose is enhanced by forming carbamate groups in cellulose chains with the help of urea. The cellulose carbamate thus formed dissolves in cold sodium zincate solution, which is regenerated into carbamate fibre by precipitating the solution in acid.

Another potential technology to be demonstrated is BioCelSol, which is jointly owned by VTT and the Tampere University of Technology. In BioCelSol technology, the dissolution of cellulose is enhanced by means of mechanical and enzymatic treatments before dissolution in sodium zincate. The trials using BioCelSol technology have not been confirmed yet.   

Further information

Senior Scientist Marjo Määttänen
VTT Technical Research Centre of Finland Ltd
tel. +358 407029527
[email protected]

Postdoctoral Researcher Sanna Hellstén
Aalto University
tel. +358 505675574
[email protected]

  • Published:
  • Updated:

Read more news

Three photos on blue background showing adults and children standing around tables
Campus, Research & Art Published:

"Bring your child to work day" 2024 at the Department of Applied Physics

Find out about a fun morning spent making ice cream for children hosted by the Department of Applied Physics
Three white, folded paper structures of varying sizes and shapes arranged on a grey surface.
Cooperation, Press releases, Research & Art Published:

New origami packaging technology creates sustainable and eye-catching alternatives to conventional packing materials

Origami packaging enables completely new properties for cartonboard, making it an excellent alternative to, for example, plastic and expanded polystyrene in packaging. The aesthetics of the material have also garnered interest from designers.
Jose Lado.
Research & Art Published:

Quantum physics professor searches for exotic qubit alternatives with new European funding

Aalto University physics professor Jose Lado will use this funding to engineer a new type of topological quantum material that could have applications for quantum bit, or “qubit,” development for noise-resilient topological quantum computation.
Talvikki Hovatta with the dome protecting the telescope in the background.
Press releases, Research & Art Published:

Talvikki Hovatta wants to solve a mystery that has plagued astronomers for decades

A new receiver at the Metsähovi Radio Observatory and ERC funding from the European Research Council will enable research into the composition of relativistic jets launched by supermassive black holes