News

Aalto University and Huawei Finland find ways to bring virtual reality to cars and busses over 5G

The work is part of a TEKES project TAKE-5.
5g_en_en.jpg

Researchers from the Department of Communications and Networking, Aalto University, Finland, and 5G Radio Network Technologies, Huawei Technologies Finland, have built a 5G Ultra Dense Network (UDN) testbed to develop ways of bringing high-data-rate services to moving cars and busses. This work is part of a TEKES project TAKE-5.

5G will utilize ever denser networks in cities to reach the challenging capacity requirement. At the same time, ability to provide connected cars and busses with sufficiently high data speed and low enough latency to support future services, such as virtual reality, becomes increasingly important. In order to combine these two trends, it is crucial to develop new ways to handle mobility in small cells. The goal of this testbed is to study such new techniques by equipping lampposts with experimental 5G base stations, developed in close cooperation between Aalto and Huawei that utilize novel mobility algorithms and procedures. The purpose is to show that cars, buses and other moving vehicles, including drones, can enjoy rates up to ten times higher compared to macro cell deployments in cities with seamless flow of data as the vehicle passes the lamppost cells.

The initial test network consists of four base stations, each comprising four antennas. The base stations connect to a centralized controller that handles data flow switching, quality of service and seamless handover between the transmission points. Testbed baseband components are off-the-shelf servers. The testbed's new software architecture simplifies system implementation, testing and addition of new features, and allows usage of a low-capacity wireless backhaul, rather than high-capacity fiber fronthaul. This last feature is critical for cost-efficient small-cell deployments in future.

Users in the test network are tracked by an uplink pilot based localization technique. With this technology the users can be tracked with precision of centimeters. Mobile terminals are not actively involved in the handover procedures, thus reducing the amount of required radio control signaling, increasing handover reliability and battery lifetime as well as simplifying system design. When combined with predictive user mobility models, the test network can perform intelligent proactive handovers resulting in a consistent quality-of-experience for end users throughout the network.

If the results with this small test network are promising, the test network may be trialed in denser city environment in near future.

  • Published:
  • Updated:
Share
URL copied!

Related news

Pitkäaikaissairauksien hoito on pirstaloitunutta ja kallista – ratkaisua haetaan virtuaalisesta hoidonohjaamosta
Research & Art Published:

Virtual care management system for solving fragmentation of chronic diseases treatment

The project, which has a budget of millions of euros and is led by Aalto University, involves University of Helsinki and numerous companies in the healthcare field.
Painted trees at Kipsari glass wall
Campus, Research & Art, Studies Published:

Holiday break at Takeout

Takeout will be closed 19.12.2020 - 10.01.2021
Nitin Sawhney standing outdoors with his bike, green grass and trees on the background
Research & Art Published:

Nitin Sawhney receives an Academy of Finland grant for analyzing and reconstructing crisis narratives

Professor Sawhney hopes that his collaborative research will offer insights into how crisis narratives emerge in society during the global pandemic
museum of impossible forms
Research & Art Published:

Museum of Impossible Forms wins State Art Prize 2020

ViCCA congratulates its students and alumni who have been active (and often founding) members of the Museum of Impossible Forms (est. 2017) – an anti-racist and queer-feminist cultural center in the suburb of Kontula – for the 2020 State Art Prize that they received from the Arts Promotion Centre Finland.