News

A new type of hand prosthesis learns from the user — and the user learns from the prosthesis

New research enables more functional and robust robotic prostheses.
Aalto_handprosthesis.png
A modern hand prosthesis controlled via the activation of muscles in the residual limb. Photo: Aalto University / Irene Guerra Mendez

Aalto University doctoral candidate Dennis Yeung and his research group have developed and tested a new type of technology that enables better compatibility between a prosthesis and the amputated area. The study was conducted in cooperation with HUS (Helsinki University Hospital) and Imperial College London. The study was funded by the Academy of Finland and the European Research Council.

People whose upper limb has been amputated can control the robotic prosthesis by contracting their remaining muscles. The connection where a prosthesis detects electrical signals produced by the muscle is known as a myoelectric interface. The most advanced prostheses use machine learning algorithms that help interpret these user-generated signals. However, such connections are often very sensitive to external factors, such as sweating, and become weaker over time. To solve this problem, the research community has proposed various algorithms that could better adapt to changing circumstances.

Currently existing systems require adjustments or other measures from the user, but Yeung and his team developed a fully automated system that learns during normal use and thus adapts to varying conditions.

’In this system, the user and the system learn from each other simultaneously. This has potential benefits in improving the convenience and robustness of robotic prostheses’, Yeung says.

More reliable prostheses

The research results were tested in a virtual environment where they were compared to currently existing systems. After these successful tests, the research team tested the user interface with a state-of-the-art prosthesis at Imperial College London by having an amputee conduct Clothespin Relocation Tests which are widely used by physiotherapists to assess the function of the upper limbs.

Adaptive prosthetic devices are rather expensive. Improving the reliability of the systems reduces the financial risks for individuals and public health institutions when obtaining prostheses.

The functionality of the system has been studied with controlled and standardised tests, but the needs of the users can best be determined with qualitative longitudinal studies.

’For future development, it is very important to continue cooperation with health care centres and prosthesis users’, Yeung says.

The results have been published in IEEE Transactions on Biomedical Engineering. The Open Access article is available through this link.

Further information:

Dennis Yeung
Doctoral candidate
Aalto University
[email protected]
+358 50 3230 897

  • Published:
  • Updated:

Read more news

Harald Herlin Learning Center
Research & Art Published:

Learning Centre to pilot new opening hours as of 19 August 2024

The change gives Aalto students and staff more extensive access rights to the Learning Centre spaces and collections.
A group of people walking along the linden alley in summer
Research & Art, University Published:

Strong overall result: 27.5 million euros from the Research Council of Finland

A total of 52 Aalto researchers received Academy Research Fellowship and Academy Project funding. The total funding awarded to Aalto University amounts to 27.5 million euros
Appointments Published:

Introducing four new professors at the School of Engineering

Professors of Practice Hannele Holttinen and Teemu Manderbacka and Assistant Professors Mikko Suominen and Risto Ojala were appointed to the career path of professors during January-June 2024.
A logo. Photo: Mikko Raskinen
Appointments, Cooperation Published:

Introducing three new professors at the School of Electrical Engineering

Assistant Professors Gopika Premsankar and Johannes Arend and Associate Professor (tenured) Marko Kosunen were appointed to the career path of professors during January-June 2024.