News

A new optical metamaterial makes true one-way glass possible

Researchers have discovered how to make a new optical metamaterial that would underpin a variety of new technologies.
The magnetic properties of a material can affect how it interacts with light.
The magnetic properties of a material can affect how it interacts with light. Photo: Ihar Faniayeu/University of Gothenburg

A new approach has allowed researchers at Aalto University to design a kind of metamaterial that has so far been beyond the reach of existing technologies. Unlike natural materials, metamaterials and metasurfaces can be tailored to have specific electromagnetic properties, which means scientists can create materials with features desirable for industrial applications. 

The new metamaterial takes advantage of the nonreciprocal magnetoelectric (NME) effect. The NME effect implies a link between specific properties of the material (its magnetization and polarization) and the different field components of light or other electromagnetic waves. The NME effect is negligible in natural materials, but scientists have been trying to enhance it using metamaterials and metasurfaces because of the technological potential this would unlock. 

‘So far, the NME effect has not led to realistic industrial applications. Most of the proposed approaches would only work for microwaves and not visible light, and they also couldn’t be fabricated with available technology,’ says Shadi Safaei Jazi, a doctoral researcher at Aalto. The team designed an optical NME metamaterial that can be created with existing technology, using conventional materials and nanofabrication techniques. 

The new material opens up applications that would otherwise need a strong external magnetic field to work – for example, creating truly one-way glass. Glass that’s currently sold as ‘one-way’ is just semi-transparent, letting light through in both directions. When the brightness is different between the two sides (for example, inside and outside a window), it acts like one-way glass. But an NME-based one-way glass wouldn’t need a difference in brightness because light could only go through it in one direction.

‘Just imagine having a window with that glass in your house, office, or car. Regardless of the brightness outside, people wouldn’t be able to see anything inside, while you would enjoy a perfect view from your window,’ says Safaei. If technology succeeds, this one-way glass could also make solar cells more efficient by blocking the thermal emissions that existing cells radiate back toward the sun, which reduces the amount of energy they capture.

The research was published in Nature Communications on 12 February 2024. 

More information: 

Research article in Nature Communications

Information about the research group

Shadi Safaei Jazi
Doctoral Researcher
+35850 322 9573
[email protected]

Viktar Asadchy
Assistant Professor
+358504205846
[email protected]

  • Published:
  • Updated:

Read more news

A man and a woman looking up in a room
Research & Art Published:

How to educate for innovation? New report sheds light on the best practices

The report by Aalto Design Factory dives into the core elements of creating a collaborative learning environment that prioritizes student-centered, real-world problem-solving.
Mari Lundström
Awards and Recognition Published:

Alfred Kordelin Prize for research on the green transition

The Alfred Kordelin Foundation has awarded the Alfred Kordelin Prize to Aalto University Professor of Hydrometallurgy Mari Lundström, dance artist and choreographer Tero Saarinen and the Sekasin Collective, a youth mental health organisation.
Valkoinen kukka edessä, ihmisiä taustalla
Press releases, Research & Art Published:

Men, Swedish speakers and Master's degree holders most likely to own shares in unlisted companies

The first comprehensive study of Finnish owners of privately held firms found, among other things, that only three per cent of the population own shares in these companies.
Nautakarjaa laitumella.
Press releases Published:

Small reductions to meat production in wealthier countries may help fight climate change, new analysis concludes

Eliminating even a small fraction of current beef production could remove three years’ worth of global fossil fuel emissions