News

A new optical metamaterial makes true one-way glass possible

Researchers have discovered how to make a new optical metamaterial that would underpin a variety of new technologies.
The magnetic properties of a material can affect how it interacts with light.
The magnetic properties of a material can affect how it interacts with light. Photo: Ihar Faniayeu/University of Gothenburg

A new approach has allowed researchers at Aalto University to design a kind of metamaterial that has so far been beyond the reach of existing technologies. Unlike natural materials, metamaterials and metasurfaces can be tailored to have specific electromagnetic properties, which means scientists can create materials with features desirable for industrial applications. 

The new metamaterial takes advantage of the nonreciprocal magnetoelectric (NME) effect. The NME effect implies a link between specific properties of the material (its magnetization and polarization) and the different field components of light or other electromagnetic waves. The NME effect is negligible in natural materials, but scientists have been trying to enhance it using metamaterials and metasurfaces because of the technological potential this would unlock. 

‘So far, the NME effect has not led to realistic industrial applications. Most of the proposed approaches would only work for microwaves and not visible light, and they also couldn’t be fabricated with available technology,’ says Shadi Safaei Jazi, a doctoral researcher at Aalto. The team designed an optical NME metamaterial that can be created with existing technology, using conventional materials and nanofabrication techniques. 

The new material opens up applications that would otherwise need a strong external magnetic field to work – for example, creating truly one-way glass. Glass that’s currently sold as ‘one-way’ is just semi-transparent, letting light through in both directions. When the brightness is different between the two sides (for example, inside and outside a window), it acts like one-way glass. But an NME-based one-way glass wouldn’t need a difference in brightness because light could only go through it in one direction.

‘Just imagine having a window with that glass in your house, office, or car. Regardless of the brightness outside, people wouldn’t be able to see anything inside, while you would enjoy a perfect view from your window,’ says Safaei. If technology succeeds, this one-way glass could also make solar cells more efficient by blocking the thermal emissions that existing cells radiate back toward the sun, which reduces the amount of energy they capture.

The research was published in Nature Communications on 12 February 2024. 

More information: 

Research article in Nature Communications

Information about the research group

Shadi Safaei Jazi
Doctoral Researcher
+35850 322 9573
[email protected]

Viktar Asadchy
Assistant Professor
+358504205846
[email protected]

  • Published:
  • Updated:

Read more news

Image from the conferment ceremony
Cooperation, Research & Art, University Published:

Doctoral education pilot arouses wide interest among applicants and corporate partners

The doctoral education pilot has got off to a fast start.
A man stands against a white background.
Awards and Recognition Published:

Broadband miniaturized spectrometer research receives QTF annual discovery award 2024

The clarity and compelling presentation of the research were one of the reasons why Doctoral Researcher Md Uddin earned the prize for the research paper, which was published in Nature Communications.
 Shankar Deka is an Assistant Professor at the Department of Electrical Engineering and Automation.
Research & Art Published:

Robotics needs safe behavior patterns

Robotics and autonomous systems are developing rapidly. Algorithms that withstand disturbances and uncertainties in the system model and environment are critical for development.
kuva puhelimesta ihmisen kädessä
Press releases Published:

Teaching a computer to type like a human

A new typing model simulates the typing process instead of just predicting words