News

A computational deep glance at 2-dimensional MXene materials reveals new insight about their surface properties

CEST researchers have uncovered novel insight into surface functionalization of materials used in a wide range of applications, such as energy storage, biochemistry, sensing, and energy production
A graphic showing a magnifying glass revealing atoms in a structure
Graphic by Rina Ibragimova taken from J. Phys. Chem. Lett. 2021, 12, 9, 2377–2384
A photo showing researcher Rina Ibragimova standing
CEST doctoral candidate Rina Ibragimova

In their latest publication, researchers from the CEST group have studied the surface composition of several MXene-type materials computationally. MXenes find application in batteries, supercapacitors, electromagnetic shielding and surface sensors. The researchers explored different surface chemistry relevant for these applications and investigated the effects of different transition metals or a different number of atomic layers. 

MXenes are two-dimensional (2D) transition metal carbides and nitrides that belong to a large class of 2D materials with extraordinary electronic, optical, mechanical, thermal, and catalytic properties. These materials have the general composition M_(n+1)X_n, where M is a transition metal and X a carbon or nitrogen atom, with n corresponding to atomic thickness. A key feature of MXenes is that their surface properties can be altered by controlling the composition of functional groups such as -O, -F, and -OH. Although a variety of MXene material properties are ascribed to their surface composition and hence functionalization, the actual structure, composition and functionality of these surfaces remain often unknown in real life.

In their current study, Rina Ibragimova and co-workers applied a multi-scale computational scheme that resulted in a realistic distribution of organic molecules on the surface of several MXenes. In addition, this model was able to demonstrate trends in the distribution and composition of surface functional groups. The researchers found that the distribution of these functional groups appears to be largely independent from the type of metal, carbon, or nitrogen used in the material, as well as from the number of atomic layers. Instead, the group shows for the first time that the distribution of these adsorbants is governed by the electrostatic nature of interactions between the molecules, and less by chemical interactions within the interior of the MXene layers. Ibragimova also successfully demonstrated the formation of mixed functional groups on the surface and explored a range of equilibrium compositions suitable for a range of experimental conditions (pH, potential, and temperature). 

In doing so, the researchers achieved a solid understanding of MXene surface functionalization, including how this surface can be modified under controlled experimental conditions and how this in turn affects electronic and other properties. These results now enable experimentalists to better estimate the composition of functional groups under certain synthesis conditions and adjust these accordingly to their needs. 

Ibragimova now wants to explore other aspects of the surface design of MXenes. That will include studies of the native defects formation in these materials and their relation with the surface functionalization. 

The article is published in The Journal of Physical Chemistry Letters.

doi10.1021/acs.jpclett.0c03710 

  • Published:
  • Updated:

Read more news

Professor Riikka Puurunen, Professor Patrick Rinke and IT Application Owner Lara Ejtehadian holding sunflowers and diplomas
Awards and Recognition, Campus, Research & Art Published:

Aalto Open Science Award ceremony brought together Aaltonians to discuss open science

Last week we gathered at A Grid to celebrate the awardees of the Aalto Open Science Award 2023 and discuss open science matters with the Aalto community.
Three female students studying
Research & Art Published:

Seed funding available to boost collaboration between Aalto, KU Leuven and University of Helsinki

Aalto University, KU Leuven and the University of Helsinki launch the 2nd exploratory seed funding call to explore research collaboration possibilities. The funding call is open until 10 September 2024.
White A! logo standing on the ground with A-bloc and Väre in the background.
Research & Art, University Published:
Nine large blocks of ice formed an art installation at Kansalaistori square in Helsinki 2021
Cooperation, Research & Art, Studies, University Published:

Aalto ARTS Summer School explores the significance of water through the lens of art

The theme of School of Arts, Design and Architecture’s Summer School this year is water, and its significance is explored in a multidisciplinary way through the perspectives of art, film and digital.