News

A computational deep glance at 2-dimensional MXene materials reveals new insight about their surface properties

CEST researchers have uncovered novel insight into surface functionalization of materials used in a wide range of applications, such as energy storage, biochemistry, sensing, and energy production
A graphic showing a magnifying glass revealing atoms in a structure
Graphic by Rina Ibragimova taken from J. Phys. Chem. Lett. 2021, 12, 9, 2377–2384
A photo showing researcher Rina Ibragimova standing
CEST doctoral candidate Rina Ibragimova

In their latest publication, researchers from the CEST group have studied the surface composition of several MXene-type materials computationally. MXenes find application in batteries, supercapacitors, electromagnetic shielding and surface sensors. The researchers explored different surface chemistry relevant for these applications and investigated the effects of different transition metals or a different number of atomic layers. 

MXenes are two-dimensional (2D) transition metal carbides and nitrides that belong to a large class of 2D materials with extraordinary electronic, optical, mechanical, thermal, and catalytic properties. These materials have the general composition M_(n+1)X_n, where M is a transition metal and X a carbon or nitrogen atom, with n corresponding to atomic thickness. A key feature of MXenes is that their surface properties can be altered by controlling the composition of functional groups such as -O, -F, and -OH. Although a variety of MXene material properties are ascribed to their surface composition and hence functionalization, the actual structure, composition and functionality of these surfaces remain often unknown in real life.

In their current study, Rina Ibragimova and co-workers applied a multi-scale computational scheme that resulted in a realistic distribution of organic molecules on the surface of several MXenes. In addition, this model was able to demonstrate trends in the distribution and composition of surface functional groups. The researchers found that the distribution of these functional groups appears to be largely independent from the type of metal, carbon, or nitrogen used in the material, as well as from the number of atomic layers. Instead, the group shows for the first time that the distribution of these adsorbants is governed by the electrostatic nature of interactions between the molecules, and less by chemical interactions within the interior of the MXene layers. Ibragimova also successfully demonstrated the formation of mixed functional groups on the surface and explored a range of equilibrium compositions suitable for a range of experimental conditions (pH, potential, and temperature). 

In doing so, the researchers achieved a solid understanding of MXene surface functionalization, including how this surface can be modified under controlled experimental conditions and how this in turn affects electronic and other properties. These results now enable experimentalists to better estimate the composition of functional groups under certain synthesis conditions and adjust these accordingly to their needs. 

Ibragimova now wants to explore other aspects of the surface design of MXenes. That will include studies of the native defects formation in these materials and their relation with the surface functionalization. 

The article is published in The Journal of Physical Chemistry Letters.

doi10.1021/acs.jpclett.0c03710 

  • Published:
  • Updated:
Share
URL copied!

Read more news

ABB_Aalto_laitelahjoitus_Kuva_Aalto-yliopisto.jpg
Cooperation, Research & Art Published:

Closer cooperation between Aalto and ABB Marine & Ports

ABB Marine & Ports and their equipment supplier Typhoon HIL are donating six simulators for researcher and student use.
Shimmering Wood sneaker designed by by Noora Yau & Konrad Klockars. Photo: Kalle Kataila
Research & Art Published:

Your invitation to Life 1.5

Save the date/planet: Welcome to our fourth Designs for a Cooler Planet festival, 7.9–12.10.2022 in Otaniemi, Espoo.
Professor Zhipei Sun, photo: Niina Norjamäki/Aalto University
Research & Art Published:

Top-up funding for Aalto University to exploit research results

Aalto University Professor Zhipei Sun is leading one of the potential frontier research projects.
Työelämäprofessori Sebastian Schlecht soittamassa virtuaalimaailmassa. Kuva: Aalto-yliopisto
Research & Art Published:

Inside the Quartet takes the audience to the virtual world of string quartets

Professional acoustics and sound specialists have been involved in implementing the virtual reality installation that will be on display in Hanover and Helsinki in May and at Our Festival in Järvenpää and Tuusula in July.