News

A combination of wood fibres and spider silk could rival plastic

The unique material outperforms most of today’s synthetic and natural materials by providing high strength and stiffness, combined with increased toughness
Hämähäkkisilkki
Silk is a natural protein that can also be produced synthetically. It has good abilities and versatile possibilities. Photo: Eeva Suorlahti

Achieving strength and extensibility at the same time has so far been a great challenge in material engineering: increasing strength has meant losing extensibility and vice versa. Now Aalto University and VTT researchers have succeeded in overcoming this challenge, with inspiration from nature.

The researchers created a truly new bio-based material by gluing together wood cellulose fibres and the silk protein found in spider web threads. The result is a very firm and resilient material which could be used in the future as a possible replacement for plastic, as part of bio-based composites and in medical applications, surgical fibres, the textile industry and packaging.

According to Aalto University Professor Markus Linder, nature offers great ingredients for developing new materials, such as firm and easily available cellulose and tough and flexible silk as used in this research. The advantage with both of these materials is that, unlike plastic, they are biodegradable and do not damage nature the same way micro-plastics do.

‘Our researchers just need to be able to reproduce the natural properties’, adds Linder, who was also leading the research.

‘We used birch tree pulp, broke it down to cellulose nanofibrils and aligned them into a stiff scaffold. At the same time, we infiltrated the cellulosic network with a soft and energy dissipating spider silk adhesive matrix,’ says Research Scientist Pezhman Mohammadi from VTT.

Silk is a natural protein which is excreted by animals like silkworms and also found in spider web threads. The spider web silk used by Aalto University researchers, however, is not actually taken from spider webs but is instead produced by the researchers using bacteria with synthetic DNA.

‘Because we know the structure of the DNA, we can copy it and use this to manufacture silk protein molecules which are chemically similar to those found in spider web threads. The DNA has all this information contained in it’, Linder explains.

‘Our work illustrates the new and versatile possibilities for protein engineering. In the future, we could manufacture similar composites with slightly different building blocks and achieve a different set of characteristics for other applications. Currently, we are working on making new composite materials as implants, impact resistance objects and other products,” says Pezhman.

The research project is part of the work of the Centre of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials (HYBER). 

The research was published in Science Advances 13 September. Link to the article (Science Advances)

More information:

Markus Linder
Professor, Aalto University
+358 50 431 5525
[email protected] 

Pezhman Mohammadi
Research Scientist, VTT
+358 40 163 7835
[email protected]

Christopher Landowski
Research Team Leader, VTT
+358 40 482 0856
[email protected]

Read more

Kuva osoittaa, miten valmistetaan biosynteettistä hämähäkinseittiä suurjännitteen avulla

Spider silk is created by adding spider DNA to microbes

Researchers studying spiders have produced a synthetic biomaterial that can, in future, be used to make a multitude of products from clothes to car parts.

News
  • Published:
  • Updated:
Share
URL copied!

Read more news

graphic illustratinig metal atoms
Research & Art Published:

Single-atom dopants in metallic nanoparticles can offer high tunability for plasmonic-catalytic applications

CEST researchers use TDDFT-based calculations to study the tunability of the plasmonic-catalytic properties of nanoparticles
ANI Aalto logo
Campus, Research & Art Published:

ANI Open House on 15th of June 2023 at 12:00-15:00

Welcome to ANI Open House to celebrate 10th anniversary of Aalto NeuroImaging Infrastructure. Doors are open 12:00-15:00 on 15th of June 2023.
A closeup of a woman in green light wearing goggles that reflect colourful pixels
Research & Art Published:

In September, 15 new Academy Researcher Fellows will start at Aalto

The Academy of Finland has granted Aalto University funding for 15 Academy Research Fellowships
On the background, white radiant lines over a black bacground and only hair and shoulder of a person passing by visible
Research & Art Published:

Nearly 20 million euros for research

A total of 45 researchers received Academy Research Fellow and Academy Project funding from the Academy of Finland