Department of Applied Physics

Voltage Control of Magnetism

Leveraging strain transfer in multiferroic heterostructures or reversible ion migration in metal/oxide bilayers and complex oxides, we seek to control magnetism by low-power voltage pulses in thin magnetic films and nanostructures.

Voltage control of magnetism provides an energy-efficient alternative to the use of magnetic fields or electric currents in magnetic memory and computing technologies. We focus on two approaches: Strain-coupling in ferromagnetic/ferroelectric bilayers and reversible ion migration.

Voltage-control
Voltage control of magnetic domain wall motion in Fe/BaTiO3. The images with green and purple dots are recorded after applying positive and negative voltage pulses. From [9].

In the ferromagnetic/ferroelectric bilayers that we study, we couple ferromagnetic films to the ferroelastic stripe domains of a ferroelectric BaTiO3 substrate. Strain transfer and inverse magnetostriction in this system leads to the imprinting of ferroelastic domain patterns into the ferromagnetic film [1-7]. Using ferromagnetic/ferroelectric domain correlations, we have demonstrated voltage control of local magnetic switching [1-3,10], the writing and erasure of regular magnetic stripe patterns [1-3], and voltage-driven reversible magnetic domain wall motion [8,9,12,14]. We also investigated the behavior of strongly pinned magnetic/ferroelectric domain walls [4,11,15] and showed that reprogramming of the magnetic domain wall structure by an external magnetic field could be used to turn the transmission of spin waves on and off [16]. Most recently, we realized voltage control over the amplitude and phase of propagating spin waves in a ferromagnetic/ferroelectric system [19].

Magneto-ionics
Schematic of a magneto-ionic lithium-ion battery structure and demonstration of voltage-driven magnetic switching between perpendicular and in-plane magnetization states.

In our magneto-ionics projects, we utilize voltage-controlled ion migration as a tool to manipulate the properties of complex oxides and ferromagnetic metals. We employ in-situ transmission electron microscopy for atomic-resolution imaging of voltage-driven redox processes [21], ion-migration-induced structural phase transitions [22], and the ordering of oxygen vacancies into 2D and 3D patterns under voltage, thermal, and mechanical actuation [23,24]. In these studies, cross-sectional specimens are mounted on sample holders that allow for the application of voltage pulses, heating, or mechanical nanoprobing. As a key result, we directly imaged oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3 films [22]. To gauge the effect of voltage pulses on magnetism, we primarily use magneto-optical Kerr effect microscopy. While we initially focused on reversible oxygen ion migration [21], we more recently studied voltage control of magnetism in multilayer stacks that are inspired by lithium-ion battery and supercapacitor technology. We found that the magnetization of thin Co films could be reversibly switched between perpendicular and in-plane states using lithium-ion migration without drastically altering the saturation magnetization [25]. Studies on the use of lithium ions in manipulating magnetic skyrmions and RKKY coupling are ongoing.           

Publications

Ferromagnetic/ferroelectric bilayers

1. T.H.E. Lahtinen, J.O. Tuomi, S. van Dijken. Pattern transfer and electric-field induced magnetic domain formation in multiferroic heterostructures. Advanced Materials 23, 3187 (2011).

2. T.H.E. Lahtinen, J.O. Tuomi, S. van Dijken. Electrical writing of magnetic domain patterns in ferromagnetic/ferroelectric heterostructures. IEEE Transactions on Magnetics 47, 3768 (2011).

3. T.H.E. Lahtinen, K.J.A. Franke, S. van Dijken. Electric-field control of magnetic domain wall motion and local magnetization reversal. Scientific Reports 2, 258 (2012).

4. K.J.A. Franke, T.H.E. Lahtinen, S. van Dijken. Field tuning of ferromagnetic domain walls on elastically coupled ferroelectric domain boundaries. Physical Review B 85, 094423 (2012).

5. T.H.E. Lahtinen, Y. Shirahata, L. Yao, K.J.A. Franke, G. Venkataiah, T. Taniyama, S. van Dijken. Alternating domains with uniaxial and biaxial magnetic anisotropy in epitaxial Fe films on BaTiO3. Applied Physics Letters 101, 262405 (2012).

6. T.H.E. Lahtinen, S. van Dijken. Temperature control of local magnetic anisotropy in multiferroic CoFe/BaTiO3. Applied Physics Letters 102, 112406 (2013).

7. K.J.A. Franke, D. Lopez Gonzalez, S.J. Hämäläinen, S. van Dijken. Size dependence of domain pattern transfer in multiferroic heterostructures. Physical Review Letters 112, 017201 (2014).

8. B. Van de Wiele, L. Laurson, K.J.A. Franke, S. van Dijken. Electric field driven magnetic domain wall motion in ferromagnetic-ferroelectric heterostructures. Applied Physics Letters 104, 012401 (2014).

9. K.J.A. Franke, B. Van de Wiele, Y. Shirahata, S.J. Hämäläinen, T. Taniyama, S. van Dijken. Reversible electric-field-driven magnetic domain-wall motion. Physical Review X 5, 011010 (2015).

10. Y. Shirahata, R. Shiina, D. Lopez Gonzalez, K.J.A. Franke, E. Wada, M. Itoh, N.A. Pertsev, S. van Dijken. T. Taniyama. Electric-field switching of perpendicular magnetized multilayers. NPG Asia Materials 7, e198 (2015).

11. A. Casiraghi, T. Rincon Dominguez, S. Rößler, K.J.A. Franke, D. Lopez Gonzalez, S.J. Hämäläinen, R. Frömter, H.P. Oepen, S. van Dijken. Influence of elastically pinned magnetic domain walls on magnetization reversal in multiferroic heterostructures. Physical Review B 92, 054406 (2015).

12. B. Van de Wiele, J. Leliaert, K.J. Franke, S. van Dijken. Electric-field-driven dynamics of magnetic domain walls in magnetic nanowires patterned on ferroelectric domains. New Journal of Physics 18, 033027 (2016).

13. D. Lopez Gonzalez, A. Casiraghi, B. Van de Wiele, S. van Dijken. Reconfigurable magnetic logic based on the energetics of pinned domain walls. Applied Physics Letters 108, 032402 (2016).

14. D. Lopez Gonzalez, Y. Shirahata, B. Van de Wiele, K.J.A. Franke, A. Casiraghi, T. Taniyama, S. van Dijken. Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers. AIP Advances 7, 035119 (2017).

15. D. Lopez Gonzalez, A. Casiraghi, F. Kronast, K.J.A. Franke, S. van Dijken. Influence of magnetic field and ferromagnetic film thickness on domain pattern transfer in multiferroic heterostructures. Journal of Magnetism and Magnetic Materials 441, 404 (2017).

16. S.J. Hämäläinen, M. Madami, H. Qin, G. Gubbiotti, S. van Dijken. Control of spin-wave transmission by a programmable domain wall. Nature Communications 9, 4853 (2018).

17. J. Wang, D. Pesquera, R. Mansell, S. van Dijken, R.P. Cowburn, M. Ghidini, N.D. Mathur. Giant non-volatile magnetoelectric effects via growth anisotropy in Co40Fe40B20 films on PMN-PT substrates. Applied Physics Letters 114, 092401 (2019).

18. L.A. Shelukhin, N.A. Pertsev, A.V. Scherbakov, D.L. Kazenwadel, D.A. Kirilenko, S.J. Hämäläinen, S. van Dijken, A.M. Kalashnikova. Laser-induced magnetization precession in individual magnetoelastic domains of a multiferroic Co40Fe40B20/BaTiO3 composite. Physical Review Applied 14, 034061 (2020).

19. H. Qin, R. Dreyer, G. Woltersdorf, T. Taniyama, S. van Dijken. Electric-field control of propagating spin waves by ferroelectric domain-wall motion in a multiferroic heterostructure. Advanced Materials 33, 2100646 (2021).

20. W. Zhu, H. Qin, L. Flajšman, T. Taniyama, S. van Dijken. Zero-field routing of spin waves in a multiferroic heterostructure. Applied Physics Letters 120, 112407 (2022).

Magneto-ionics

21. L. Yao, S. Majumdar, L. Äkäslompolo, S. Inkinen, Q. Qin, S. van Dijken. Electron-beam-induced perovskite-brownmillerite-perovskite structural phase transitions in epitaxial La2/3Sr1/3MnO3 films. Advanced Materials 26, 2789 (2014).

22. U. Bauer, L. Yao, A.J. Tan, P. Agrawal, S. Emori, H.L. Tuller, S. van Dijken, G.S.D. Beach. Magneto-ionic control of interfacial magnetism. Nature Materials 14, 174 (2015).

23. L. Yao, S. Inkinen, S. van Dijken. Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nature Communications 8, 14544 (2017).

24. S. Inkinen, L.D. Yao, S. van Dijken. Reversible thermal strain control of oxygen vacancy ordering in an epitaxial La0.5Sr0.5CoO3-d film. Physical Review Materials 4, 046002 (2020).

25. L.D. Yao, S. Inkinen, H.P. Komsa, S. van Dijken. Structural phase transitions to 2D and 3D oxygen vacancy patterns in a perovskite film induced by electrical and mechanical nanoprobing. Small 17, 2006273 (2021).

26. M. Ameziane, R. Mansell, V. Havu, P. Rinke, S. van Dijken. Lithium-ion battery technology for voltage control of perpendicular magnetization. Advanced Functional Materials 32, 2113118 (2022).

27. M. Ameziane, J. Huhtasalo, L. Flajšman, R. Mansell, S. van Dijken. Solid-state lithium ion supercapacitor for voltage control of skyrmions. Nano Letters 23, 3167 (2023).

28. M. Ameziane, R. Rosenkamp, L. Flajšman, S. van Dijken, R. Mansell. Electric field control of RKKY coupling through solid-state ionics. Applied Physics Letters 122, 232401 (2023).

Reviews, roadmaps, book chapters

29. S. van Dijken. Hybrid ferroelectric/ferromagnetic materials. In Handbook of Spintronics (Springer, 2015).

30. K.J.A. Franke, T.H.E. Lahtinen, A. Casiraghi, D. Lopez Gonzalez, S.J. Hämäläinen, S. van Dijken. Electric field control of magnetism based on elastically coupled ferromagnetic and ferroelectric domains. In Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects (Wiley, 2016).

31. X.F. Liang, A. Matyushov, P. Hayes, V. Schell, C.Z. Dong, H.H. Chen, Y.F. He, A. Will-Cole, E. Quandt, P. Martins, J. McCord, M. Medarde, S. Lanceros-Mendez, S. van Dijken, N.A.X. Sun, J. Sort. Roadmap on magnetoelectric materials and devices. IEEE Transactions on Magnetism 57, 400157 (2021).

  • Published:
  • Updated: