Department of Applied Physics

Fusion and Plasma Physics

The Fusion and Plasma Physics group at Aalto University investigates experimentally and by computer simulations plasma phenomena in magnetically confined fusion plasma physics. The overall goal is to create a new, clean and virtually unlimited energy source.
Flux surface diagnostics: field line visualization in Wendelstein 7-X stellarator. Photo: Matthias Otte / IPP
Flux surface diagnostics: field line visualization in Wendelstein 7-X stellarator. Photo: Matthias Otte / IPP

The fusion process encompasses light elements, such as hydrogen and its isotopes deuterium and tritium, to merge to heavier elements, such as helium, thereby releasing large amounts of energy in form of MeV neutrons and protons. To harness this energy, a plasma needs to confined either magnetically or inertially, and heated to temperatures in excess of 100 million Kelvins. At these temperatures the fusion process becomes self-sustained by heating of the plasma via energetic by-products, such as helium. The fusion challenge consists in confining the plasma sufficiently long and controlling its interaction with the surrounding walls.

The group’s research activities concentrate on the tokamak concept. We participate in experiments at present fusion facilities, such as ASDEX Upgrade, DIII-D, and JET, develop and validate computational models for present and future, burning-plasma reactors, such as ITER, and develop diagnostics for fusion relevant experiments.

The group is part of FinnFusion, the domestic agency administrating fusion research within EUROfusion, and member of FuseNet, the European Fusion Education Network facilitating student exchange at Bachelor's, Master's and PhD level. The group is supported by the Academy of Finland and other funding agencies.

Mathias Groth

Group leader

Mathias Groth

Research

The main research interests are listed below, including codes, experimental apparatuses and facilities, and major scientific results.

Codes used and developed by the Fusion and Plasma Physics group 

Experimental plasma-wall interaction research

Collaboration with experimental research institutes

Open positions

Unfortunately, we currently do not have open positions.

Latest publications

Modeling of plasma facing component erosion, impurity migration, dust transport and melting processes at JET-ILW

I. Borodkina, D. V. Borodin, D. Douai, J. Romazanov, E. Pawelec, E. de la Cal, H. Kumpulainen, S. Ratynskaia, L. Vignitchouk, D. Tskhakaya, A. Kirschner, E. Lazzaro, A. Uccello, S. Brezinsek, T. Dittmar, M. Groth, A. Huber, E. Thoren, G. Gervasini, F. Ghezzi, F. Causa, A. Widdowson, K. Lawson, D. Matveev, S. Wiesen, L. Laguardia 2024 Nuclear Fusion

Helium plasma operations on ASDEX Upgrade and JET in support of the non-nuclear phases of ITER

A. Hakola, M. Balden, M. Baruzzo, R. Bisson, S. Brezinsek, T. Dittmar, D. Douai, M. Dunne, L. Garzotti, M. Groth, R. Henriques, L. Horvath, I. Jepu, E. Joffrin, A. Kappatou, D. Keeling, K. Krieger, B. Labit, M. Lennholm, J. Likonen, A. Loarte, P. Lomas, C. Lowry, M. Maslov, D. Matveev, R. A. Pitts, U. Plank, M. Rasinski, D. Ryan, S. Saarelma, S. Silburn, E. R. Solano, W. Suttrop, T. Tala, E. Tsitrone, N. Vianello, T. Wauters, A. Widdowson, M. Wischmeier 2024 Nuclear Fusion

Calibration improvements expand filterscope diagnostic use

J. L. Herfindal, E. A. Unterberg, K. M. Davda, E. W. Garren, M. Groth, F. Scotti, Aaron C. Sontag, D. D. Truong, R. S. Wilcox 2024 Review of Scientific Instruments

Numerical study of limits of neoclassical theory in the plateau regime in the presence of impurities

Riccardo Nicolò Iorio, T. P. Kiviniemi, E. Hirvijoki, L. Chône, S. Janhunen, F. Albert, S. Leerink 2024 Contributions to Plasma Physics

Validated edge and core predictions of tungsten erosion and transport in JET ELMy H-mode plasmas

H. A. Kumpulainen, M. Groth, S. Brezinsek, F. Casson, G. Corrigan, L. Frassinetti, D. Harting, J. Romazanov 2024 Plasma Physics and Controlled Fusion

Characterisation of the scrape-off layer in JET-ILW deuterium and helium low-confinement mode plasmas

D. Rees, M. Groth, S. Aleiferis, S. Brezinsek, M. Brix, I. Jepu, K. D. Lawson, A. G. Meigs, S. Menmuir, K. Kirov, P. Lomas, C. Lowry, B. Thomas, A. Widdowson, P. Carvalho, E. Delabie 2024 Nuclear Materials and Energy

Comparison of the scrape-off layer two-point model for deuterium and helium plasmas in JET ITER-like wall low-confinement plasma conditions

David Rees, Joona Sissonen, Mathias Groth, Vesa Pekka Rikala, Henri Kumpulainen, Beth Thomas, Mathias Brix 2024 Contributions to Plasma Physics

Comparison of OEDGE and EDGE2D-EIRENE predictions of the scrape-off layer conditions for attached plasmas

Vesa Pekka Rikala, Mathias Groth, Henri Kumpulainen, David Rees 2024 Contributions to Plasma Physics

Multi-staged ERO2.0 simulation of material erosion and deposition in recessed mirror assemblies in JET and ITER

S. Rode, S. Brezinsek, M. Groth, A. Kirschner, D. Matveev, L. Moser, R. Pitts, J. Romazanov, A. Terra, T. Wauters, S. Wiesen 2024 Nuclear Fusion

Validation of the ERO2.0 code using W7-X and JET experiments and predictions for ITER operation

J. Romazanov, S. Brezinsek, C. Baumann, S. Rode, A. Kirschner, E. Wang, F. Effenberg, D. Borodin, M. X. Navarro, H. Xie, M. Groth, H. Kumpulainen, K. Schmid, R. A. Pitts, A. Terra, A. Knieps, Y. Gao, M. Krychowiak, A. Pandey, Ch Linsmeier 2024 Nuclear Fusion
More information on our research in the Aalto research portal.
Research portal
  • Published:
  • Updated: