News

A theoretical surface study of a potential third generation solar cell material opens up prospects for more efficient solar energy conversion

A new article by the CEST group reveals atomic and electronic structure of perovskite material for future photovoltaic applications.
Picture showing the surface from top and side
Graphic taken from Seidu et al., APL Mater. 9, 111102 (2021)
Azimatu Seidu
CEST doctoral candidate Azimatu Seidu

Energy is an essential commodity of our existence, as such, having a sustainable, renewable and affordable energy source is vital. Of all the renewable energy sources, the sun is the most promising due to the vast amount of energy it radiates to the earth surface. To benefit from this vast energy from the sun, a comprehensive study into photovoltaics is needed. In this article, we present our findings from the surface study of a perovskite material, methyl ammonium triiodide (MAPbI3).

The results of a new theoretical study into the surfaces of methyl ammonium triiodide (MAPbI3), the most studied perovskite material with potential for photovoltaic applications, highlights both the complexity of such surfaces and paves the way for future surface science and interface studies.

MAPbI3 is an organic-inorganic hybrid perovskite material which has remarkable electronic properties, capable of becoming the most efficient third generation optoelectronic material.

These properties make it particularly suitable for use in photovoltaic applications.

A recent article authored by Azimatu Seidu unravels the (001) surface of MAPbI3 using theoretical methods. In particular, Seidu and co-workers investigated the atomic and electronic structure of the tetragonal (I4cm) phase of MAPbI3 surface. For this phase, Seidu studied surfaces with MAI- (MAI-T) and PbI2-terminations (PbI2-T) and found MAI-T to be more stable than PbI2-T.

In addition, the work explored surface reconstructions of MAI-T by adding and removing constituent elements (MeNH2, MA, Pb, and I) as well as their complexes (MAI, HI and PbI2).  Interestingly, they found out that adding or removing nonpolar MAI and PbI2 units, turned out to be most stable.

These results and previous findings from Seidu and co-workers now offer concrete guidance for growing favourable perovskite surfaces for use in photovoltaics. Seidu now plans to combine her recent work and previous search on suitable coating materials for perovskites to model stable and robust perovskites for solar applications. The future research and the final part of Seidu’s PhD combines a machine learning based Bayesian optimization structural search (BOSS) and density functional theory (DFT) to obtain stable coating-perovskite interfaces. 

Further details on this manuscript can be found in: https://aip.scitation.org/doi/10.1063/5.0067108.

  • Published:
  • Updated:
Share
URL copied!

Read more news

Image and photo by Aalto University, Giulnara Launonen. MMD logo by Aalto University, Mithila Mohan
Research & Art Published:

Multifunctional Materials Design: Highlights of 2022

Our group's milestones of the previous year
Utuinen ihmishahmo näyttää kävelevän pois päin, varjo heijastuu vaalealle pinnalle
Research & Art, Studies, University Published:

Master's students' exhibition at the Finnish Museum of Photography

The MoA in Photography 23 exhibition by the Master's students of the Department of Photography is on display until 12 March.
Nainen rannalla tuulisella säällä hymyilee, taustalla meri kuohuaa
Appointments, Research & Art Published:

Professor Ranja Hautamäki: ‘Diverse urban nature is key to increasing well-being and carbon sinks’

Professor of Landscape Architecture is tackling the issues of climate change mitigation and urban carbon sinks.
NASAn Curiosity-mönkijä kuvaama pölypyörre Marsin Gale-kraatterissa. Kuvankäsittely: Henrik Kahanpää. Alkuperäinen kuva: NASA / JPL-Caltech
Research & Art, Studies Published:

On Mars the weather varies dramatically, however the planet’s climate is not changing

The doctoral dissertation of Henrik Kahanpää also questions a prevailing perception related to dust devils on Mars. As a researcher, he hopes that humans would never go to Mars.