News

A theoretical surface study of a potential third generation solar cell material opens up prospects for more efficient solar energy conversion

A new article by the CEST group reveals atomic and electronic structure of perovskite material for future photovoltaic applications.
Picture showing the surface from top and side
Graphic taken from Seidu et al., APL Mater. 9, 111102 (2021)
Azimatu Seidu
CEST doctoral candidate Azimatu Seidu

Energy is an essential commodity of our existence, as such, having a sustainable, renewable and affordable energy source is vital. Of all the renewable energy sources, the sun is the most promising due to the vast amount of energy it radiates to the earth surface. To benefit from this vast energy from the sun, a comprehensive study into photovoltaics is needed. In this article, we present our findings from the surface study of a perovskite material, methyl ammonium triiodide (MAPbI3).

The results of a new theoretical study into the surfaces of methyl ammonium triiodide (MAPbI3), the most studied perovskite material with potential for photovoltaic applications, highlights both the complexity of such surfaces and paves the way for future surface science and interface studies.

MAPbI3 is an organic-inorganic hybrid perovskite material which has remarkable electronic properties, capable of becoming the most efficient third generation optoelectronic material.

These properties make it particularly suitable for use in photovoltaic applications.

A recent article authored by Azimatu Seidu unravels the (001) surface of MAPbI3 using theoretical methods. In particular, Seidu and co-workers investigated the atomic and electronic structure of the tetragonal (I4cm) phase of MAPbI3 surface. For this phase, Seidu studied surfaces with MAI- (MAI-T) and PbI2-terminations (PbI2-T) and found MAI-T to be more stable than PbI2-T.

In addition, the work explored surface reconstructions of MAI-T by adding and removing constituent elements (MeNH2, MA, Pb, and I) as well as their complexes (MAI, HI and PbI2).  Interestingly, they found out that adding or removing nonpolar MAI and PbI2 units, turned out to be most stable.

These results and previous findings from Seidu and co-workers now offer concrete guidance for growing favourable perovskite surfaces for use in photovoltaics. Seidu now plans to combine her recent work and previous search on suitable coating materials for perovskites to model stable and robust perovskites for solar applications. The future research and the final part of Seidu’s PhD combines a machine learning based Bayesian optimization structural search (BOSS) and density functional theory (DFT) to obtain stable coating-perovskite interfaces. 

Further details on this manuscript can be found in: https://aip.scitation.org/doi/10.1063/5.0067108.

  • Published:
  • Updated:
Share
URL copied!

Read more news

A dog and two researchers. Photo: Aalto University/Mikko Raskinen
Research & Art Published:

Significant Academy of Finland funding for for the multidisciplinary consortium project PAWWS – People and Animal Wellbeing at Work and in Society

Astrid Huopalainen, Assistant Professor at Aalto University, Linda Tallberg, Assistant Professor at Hanken School of Economics, and Anna Hielm-Björkman, Docent at University of Helsinki, are principal investigators of the project
A teacher and two researchers smiling and sorting through paper presentations in a classroom
Research & Art Published:

Empathy in design and digitalisation – Aalto University researchers hold workshops for students at Arabia Comprehensive School

Aalto University researchers organised workshops for seventh graders, whose creative thinking skills were put to the test in designing future information services
Maja Jantar's rehearsal at Tartu Planetarium
Research & Art Published:

The Creative Europe project ‘Urban Travel Machines’ at Tartu international literary festival in Estonia

Eleven Aalto Arts students and VCD Lecturer Tarja Nieminen participated in the Tartu international literary festival Prima Vista from 9th to 13th May 2023.
Kimmo Karhu is a post-doctoral researcher at Aalto University.
Research & Art Published:

The BalticSeaH2 project starts building a hydrogen valley around the Baltic Sea

Aalto University will focus on studying the use of data-mediated network effects to boost the growth in the hydrogen valley.