News

A greener route to blue – a new method drastically reduces the amount of solvent needed to produce widely used organic dyes

Phthalocyanines are used in renewable energy production, sensing, nanomedicine and more. Researchers at Aalto University have demonstrated how the dye can be produced in a greener way that minimizes high-boiling organic solvents, by using solid-state synthesis instead.
Koeputkia, joissa on eri värisiä nesteitä.
Evolution of dye formation over 48 hours of reaction time, after dissolving equal amount of solid into equal amount of solvent. Image: Aalto University/Sandra Kaabel

Organic, or carbon-containing dyes have important roles in nature. For example, they are responsible for transporting oxygen and other gases in the body (as part of haemoglobin) and converting solar energy into chemical energy in photosynthesis (chlorophyll).

One class of artificial organic dyes is phthalocyanines, which are widely applied in industrial processes, sensing, nanomedicine, solar cells and other optoelectronics. However, the production of phthalocyanines is not without its issues, says Eduardo Anaya, Aalto University Academy Research Fellow and one of the main authors of the new study.

‘Phthalocyanines are produced by using a lot of solvents such as dimethylaminoethanol (DMAE). It is corrosive, flammable, bioactive and harmful to the environment.’

Anaya and colleagues at Aalto University have demonstrated how phthalocyanines can be produced in a more environmentally friendly way with solid-state synthesis. Their research, published in the journal Angewandte Chemie International Edition, was categorised as a “hot paper”.

Industry in the European Union alone uses 10,000 tonnes of DMAE per year for many different processes. In this new method introduced by Aalto researchers, the amount of solvent is reduced by over 99%, says postdoctoral researcher Sandra Kaabel, another of the main authors.

The research team used phthalonitrile as the starting material, an organic compound commonly used in the production of dyes. It was first processed with a few drops of DMAE and a zinc template by ball-milling, after which the solid reaction mixture was aged in an oven at 55 °C for a week, or at 100°C for 48 hours.

‘It was fascinating to see how the colour went from white, through green and changed into a deep blue in the oven – you could see with your own eyes how the method works,’ says Kaabel. ‘By solid-state methods we can produce chemicals without needing to dissolve the components of the reaction.’

In the traditional method, a solvent is heated in between 160 to 250°C and the overall yield is fairly low in relation to the materials and time spent. The environmentally-friendly method developed by Aalto researchers boosted the space-time yield four-fold by removing most of the solvent and carrying out the reactions at a lower temperature.

sinistä väriainetta kasassa
As-obtained crude end-product after the solid-state synthesis. Image: Aalto University/Sandra Kaabel

Example from nature, idea brewed over coffee

The molecular structure of phthalocyanine makes it adaptable to a wide range of applications.

‘Nature is an inspiration, having created organic colours for many different purposes over millions of years,’ says Anaya. ‘We can capture them as they are and use colours in artificial photosynthesis to produce energy, for example, or take ideas even further.’

Ideas for new biomaterial solutions are refined at FinnCERES, a competence centre shared by Aalto University and VTT Technical Research Centre of Finland. The research group is working within the FinnCERES project “SolarSafe” to develop cellulosic material that is self-sterilizing through a reaction initiated by a dye and light and could be applied in biomedicine.

Such new ideas are born through encounters, both inside and outside the lab.

‘The idea for our new way to produce dyes also came about from us brainstorming in the coffee room–and then we just started experimenting,’ says Daniel Langerreiter, the first author and a PhD student in the group.

Link to the paper: https://doi.org/10.1002/anie.202209033

FinnCERES - Flagship for boosting bioeconomy

Boosting the world’s bioeconomy by developing new bio-based materials with Aalto University and VTT, companies, and research organizations through a shared passion to create a sustainable future and a belief in innovations based on solid scientific foundations.

Read more
Birch leaves. Photo: Valeria Azovskaya
  • Published:
  • Updated:
Share
URL copied!

Read more news

Image and photo by Aalto University, Giulnara Launonen. MMD logo by Aalto University, Mithila Mohan
Research & Art Published:

Multifunctional Materials Design: Highlights of 2022

Our group's milestones of the previous year
Nainen rannalla tuulisella säällä hymyilee, taustalla meri kuohuaa
Appointments, Research & Art Published:

Professor Ranja Hautamäki: ‘Diverse urban nature is key to increasing well-being and carbon sinks’

Professor of Landscape Architecture is tackling the issues of climate change mitigation and urban carbon sinks.
NASAn Curiosity-mönkijä kuvaama pölypyörre Marsin Gale-kraatterissa. Kuvankäsittely: Henrik Kahanpää. Alkuperäinen kuva: NASA / JPL-Caltech
Research & Art, Studies Published:

On Mars the weather varies dramatically, however the planet’s climate is not changing

The doctoral dissertation of Henrik Kahanpää also questions a prevailing perception related to dust devils on Mars. As a researcher, he hopes that humans would never go to Mars.
A portrait of Laureen Mahler.
Research & Art Published:

Laureen Mahler uses origami folding to create bio-based packaging that is also pleasant to look at

Many products of the packaging industry are made of plastic and other fossil-based materials. The Aalto University Bioinnovation Center is developing ecological packaging solutions based on origami folding which also have value as beautiful objects.