Erik Schultheis

Visitor
Visitor
T313 Dept. Computer Science
Full researcher profile
https://research.aalto.fi/...

Utmärkelser

NeurIPS 2021 Outstanding Reviewer Award

Award or honor granted for a specific work School common, SCI Oct 2021

Forskningsgrupp

  • Professorship Marttinen P., Doctoral Researcher
  • Professorship Babbar Rohit, Visitor (Faculty)
  • Professorship Marttinen P., Visitor (Faculty)

Publikationer

How Well Calibrated are Extreme Multi-label Classifiers? An Empirical Analysis

Nasib Ullah, Erik Schultheis, Jinbin Zhang, Rohit Babbar 2025 KDD 2025 : Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining

Navigating Extremes: Dynamic Sparsity in Large Output Spaces

Nasib Ullah, Erik Schultheis, Mike Lasby, Yani Ioannou, Rohit Babbar 2025 Advances in Neural Information Processing Systems 37 (NeurIPS 2024)

ELMO : Efficiency via Low-precision and Peak Memory Optimization in Large Output Spaces

Jinbin Zhang, Nasib Ullah, Erik Schultheis, Rohit Babbar 2025 Proceedings of Machine Learning Research

Gandalf: Learning Label-label Correlations in Extreme Multi-label Classification via Label Features

Siddhant Kharbanda, Devaansh Gupta, Erik Schultheis, Atmadeep Banerjee, Cho Jui Hsieh, Rohit Babbar 2024 KDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

A General Online Algorithm for Optimizing Complex Performance Metrics

Wojciech Kotłowski, Marek Wydmuch, Erik Schultheis, Rohit Babbar, Krzysztof Dembczyński 2024 Proceedings of Machine Learning Research

Consistent algorithms for multi-label classification with macro-at-k metrics

Erik Schultheis, Wojciech Kotłowski, Marek Wydmuch, Rohit Babbar, Strom Borman, Krzysztof Dembczyński 2024 12th International Conference on Learning Representations (ICLR 2024)

Generalized test utilities for long-tail performance in extreme multi-label classification

Erik Schultheis, Marek Wydmuch, Wojciech Kotlowski, Rohit Babbar, Krzysztof Dembczynski 2024 Advances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023

LLaMA-Annotate—Visualizing Token-Level Confidences for LLMs

Erik Schultheis, S. T. John 2024 Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track - European Conference, ECML PKDD 2024, Proceedings

Extreme Multicore Classification

Erik Schultheis, Rohit Babbar 2023 Machine Learning under Resource Constraints