Milica Todorovic

Contingent Worker
Contingent Worker
T304 Dept. Applied Physics

I run the machine learning research projects of the Computational Electronic Structure Theory (CEST) group at Aalto University. We are interfacing machine learning algorithms with quantum mechanical simulations of materials with the aim to optimise material functionality. In particular, we seek to improve the performance of organic and inorganic components in solar cell devices. See more about our research on optimising organic/inorganic interfaces and data-driven materials science.

Full researcher profile
https://research.aalto.fi/...

Kontakuppgifter

Telefonnummer
+358503310029

Forskningsgrupp

  • Computational Electronic Structure Theory, Visitor (Faculty)

Publikationer

Exploring the Conformers of an Organic Molecule on a Metal Cluster with Bayesian Optimization

Lincan Fang, Xiaomi Guo, Milica Todorovic, Patrick Rinke, Xi Chen 2023 JOURNAL OF CHEMICAL INFORMATION AND MODELING

Machine learning as a tool to engineer microstructures: Morphological prediction of tannin-based colloids using Bayesian surrogate models

Soo Ah Jin, Tero Kämäräinen, Patrick Rinke, Orlando J. Rojas, Milica Todorovic 2022 MRS Bulletin

Roadmap on Machine learning in electronic structure

H. J. Kulik, T. Hammerschmidt, J. Schmidt, S. Botti, M. A.L. Marques, M. Boley, M. Scheffler, M. Todorović, P. Rinke, C. Oses, A. Smolyanyuk, S. Curtarolo, A. Tkatchenko, A. P. Bartók, S. Manzhos, M. Ihara, T. Carrington, J. Behler, O. Isayev, M. Veit, A. Grisafi, J. Nigam, M. Ceriotti, K. T. Schütt, J. Westermayr, M. Gastegger, R. J. Maurer, B. Kalita, K. Burke, R. Nagai, R. Akashi, O. Sugino, J. Hermann, F. Noé, S. Pilati, C. Draxl, M. Kuban, S. Rigamonti, M. Scheidgen, M. Esters, D. Hicks, C. Toher, P. V. Balachandran, I. Tamblyn, S. Whitelam, C. Bellinger, L. M. Ghiringhelli 2022 Electronic Structure

Compositional engineering of perovskites with machine learning

Jarno Laakso, Milica Todorovic, Jingrui Li, Guo-Xu Zhang, Patrick Rinke 2022 Physical Review Materials

Machine learning sparse tight-binding parameters for defects

Christoph Schattauer, Milica Todorović, Kunal Ghosh, Patrick Rinke, Florian Libisch 2022 npj Computational Materials

Efficient Amino Acid Conformer Search with Bayesian Optimization

Lincan Fang, Esko Makkonen, Milica Todorović, Patrick Rinke, Xi Chen 2021 Journal of Chemical Theory and Computation

Integrating Bayesian Inference with Scanning Probe Experiments for Robust Identification of Surface Adsorbate Configurations

Jari Järvi, Benjamin Alldritt, Ondřej Krejčí, Milica Todorović, Peter Liljeroth, Patrick Rinke 2021 Advanced Functional Materials

Efficient hyperparameter tuning for kernel ridge regression with Bayesian optimization

Annika Stuke, Patrick Rinke, Milica Todorovic 2021 Machine Learning: Science and Technology

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

Jari Jarvi, Patrick Rinke, Milica Todorovic 2020 Beilstein Journal of Nanotechnology

Bayesian Optimization Structure Search (BOSS)

Joakim Löfgren, Milica Todorovic, Patrick Rinke, Henri Paulamäki, Arttu Tolvanen, Ville Parkkinen, Ulpu Remes, Nuutti Sten 2020