Uutiset

Vihapuhetta tunnistavat tekoälyt menevät sekaisin ”rakkaudesta”

Tutkijat osoittivat, että sosiaalisessa mediassa ja verkkopalveluissa käytettävät vihapuheentunnistimet ovat helposti ihmisten huijattavissa.
Google Perspective arvioi verkkokommentteja loukkaavuuden perusteella. Vihapuheeksi alun perin tunnistettu lause läpäisee seulan, kun se sotketaan kirjoitusvirheellä ja sanalla ’rakkaus’.

Vihapuheen ja loukkaavan kommentoinnin määrä verkossa vain kasvaa. Sen hillitsemiseksi tarvitaan automaattisia työkaluja, jotka tunnistavat verkkopalvelujen sääntöjen vastaisen tai jopa laittoman sisällön.

Nyt Aalto-yliopiston Secure Systems -tutkimusryhmä on kuitenkin löytänyt parhaistakin koneoppimiseen perustuvista vihapuheentunnistimista merkittäviä heikkouksia. Käyttäjien on yllättävän helppo kiertää vihapuheen suitsemiseen kehitettyjä tekoälytyökaluja. Tarkoituksellinen tai tahaton huono kielioppi ja kirjoitusvirheet voivat tehdä vihanlietsonnasta ja loukkauksista tekoälylle vaikeita tunnistaa.

Ryhmä kokeili seitsemän uuden tunnistamistyökalun tarkkuutta. Kaikki reputtivat testit.

Nykyaikaiset luonnollisen kielen prosessointiin käytetyt mallit pystyvät luokittelemaan tekstiä merkkien, sanojen ja lauseiden piirteiden perusteella. Kun mallit joutuvat analysoimaan tekstidataa, jollaista ei ole käytetty niiden opettamiseen, tulosten laatu alkaa kärsiä.

”Lisäsimme vihapuheeksi tai loukkaavaksi määriteltyjen kommenttien sekaan kirjoitusvirheitä, muokkasimme sanojen rajoja tai lisäsimme joukkoon neutraaleja sanoja. Välilyöntien poistaminen sanojen välistä osoittautui englanninkielisen sisällön manipuloinnissa tehokkaimmaksi. Kaikkia keinoja yhdistelemällä saimme jopa Googlen kommenttien arvottamiseen käyttämän Perspective-työkalun sekaisin”, kertoo Tommi Gröndahl, Aalto-yliopiston tohtorikoulutettava.

Google Perspective luokittelee kommenttien loukkaavuutta tai ”toksisuutta” eri tekstianalyysin menetelmien avulla. Vuonna 2017 Washingtonin yliopiston tutkijat osoittivat, että Perspectiveä voi kuitenkin huijata lisäämällä tekstiin pieniä kirjoitusvirheitä.

Gröndahl havaitsi kollegoineen, että Perspective on sittemmin oppinut tunnistamaan myös kirjoitusvirheet, mutta se on edelleen huijattavissa muunlaisella manipuloinnilla, esimerkiksi poistamalla välilyöntejä ja lisäämällä harmittomia sanoja, kuten love, ’rakkaus’.

Perspectiven ja monen muun edistyneen vihapuheentunnistimen seulan läpäisi esimerkiksi lause ”I hate you” (”minä vihaan sinua”), kun se muokattiin muotoon ”Ihateyou love”.

Tutkijat huomauttavat, että asiayhteys määrittää pitkälti sen, tulkitaanko yksittäinen kommentti vihaksi vai vain asiattomaksi tai mauttomaksi. Vihapuhe on subjektiivista ja kontekstisidonnaista, ja tutkijoiden mukaan pelkät koneelliset tekstianalyysimenetelmät eivät riitä sen tarkkaan tunnistamiseen.

”Ihmiset muuttavat toimintaansa ja alkavat kokeilla eri tapoja kirjoittaa, koska he haluavat välttää kiinnijäämistä. Ollakseen tehokas tekoäly tarvitsee avukseen ihmisen tekemää tulkintaa”, uskoo tutkimusryhmän johtaja, Aalto-yliopiston professori N. Asokan.

Tekstiä analysoivien koneoppimismallien kehittämisessä tulisi tutkijoiden mukaan kiinnittää huomiota mallien opettamiseen käytettävän datan laatuun ja monipuolisuuteen, eikä niinkään mallien rakenteiden hiomiseen.

Ryhmän tulokset osoittavat myös, että vihapuheentunnistimet voisivat olla nykyistä tarkempia, jos ne analysoisivat tekstiä yksittäisten merkkien ja niiden yhdistelmien tasolla. Lisäksi kommenttien kontekstin luokittelua pitäisi saada hienovaraisemmaksi, jotta mallit osaisivat erottaa toisistaan esimerkiksi rasismin, seksismin ja henkilökohtaiset hyökkäykset.

Tutkimus tehtiin yhteistyössä Aalto-yliopiston Secure Systems -ryhmän ja Padovan yliopiston tutkijoiden kanssa. Tulokset esitellään lokakuussa ACM AISec -konferenssissa Torontossa.

Ryhmän artikkeli ”All You Need is "Love": Evading Hate-speech Detection” on osa Aalto-yliopiston Secure Systems -ryhmän projektia, joka tutkii tekstianalyysin keinoin valheellisen tai vilpillisen sisällön tunnistamista verkossa.

Tutkimusartikkeli:

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti, N.Asokan:
All You Need is "Love": Evading Hate-speech Detection.
https://arxiv.org/abs/1808.09115

Lisätietoja:
Tommi Gröndahl, tohtorikoulutettava
Aalto-yliopisto
Secure Systems -ryhmä
[email protected]
puh. 0400 426 523

N. Asokan, professori
Aalto-yliopisto
Secure Systems -ryhmä
[email protected]
puh. 050 483 6465

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Tree on lawn
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Tutkijat: Viherrakentaminen on hiilinielu – mutta sen teholle ei ole kunnon mittareita

Rakentamisesta tutut ympäristöselosteet eivät toimi, kun arvioidaan kasvien ja maaperän kykyä sitoa hiiltä.
Etäläsnäolorobotin toimivuutta testattiin projektin aikana eri kohteissa ja palaute oli positiivista. Kuva: VTT
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Tutkijat: Palvelurobotiikka on osa hoitajien työtä kymmenen vuoden kuluttua

Kuusivuotisessa ROSE-hankkeessa testattiin muun muassa etäläsnäolorobotteja ja hoitajien voimaliivejä. Kokemukset olivat positiivisia, mutta robotiikan tekninen kehitys ei ole vielä kaikilta osin vaadittavalla tasolla. Hanke on julkaissut tiekartan hoivarobotiikan kestävään laajamittaiseen hyödyntämiseen.
 Äänen viivettä on tutkittu Suomen hiljaisimmassa huoneessa Otaniemessä sijaitsevassa kaiuttomassa huoneessa.  Kuva: Aalto-yliopisto / Mikko Raskinen
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Ihmiskorva erottaa jopa puolen millisekunnin viiveen

Tutkijat selvittivät, millaisia aikaeroja ihmiskorva pystyy havaitsemaan äänen eri taajuuksien saapumisessa.
Havainnekuva A Blanc -ostoskeskuksesta
Kampus, Mediatiedotteet Julkaistu:

Ostoskeskus A Blanc aukeaa Otaniemeen kesällä

Alvar Aallon suunnittelema ”Otaniemen vanha ostari”, nykyinen ostoskeskus A Blanc, uudistui peruskorjauksessa vanhaa kunnioittaen palvelemaan monipuolista liiketoimintaa.