Vihapuhetta tunnistavat tekoälyt menevät sekaisin ”rakkaudesta”

Tutkijat osoittivat, että sosiaalisessa mediassa ja verkkopalveluissa käytettävät vihapuheentunnistimet ovat helposti ihmisten huijattavissa.
Google Perspective arvioi verkkokommentteja loukkaavuuden perusteella. Vihapuheeksi alun perin tunnistettu lause läpäisee seulan, kun se sotketaan kirjoitusvirheellä ja sanalla ’rakkaus’.

Vihapuheen ja loukkaavan kommentoinnin määrä verkossa vain kasvaa. Sen hillitsemiseksi tarvitaan automaattisia työkaluja, jotka tunnistavat verkkopalvelujen sääntöjen vastaisen tai jopa laittoman sisällön.

Nyt Aalto-yliopiston Secure Systems -tutkimusryhmä on kuitenkin löytänyt parhaistakin koneoppimiseen perustuvista vihapuheentunnistimista merkittäviä heikkouksia. Käyttäjien on yllättävän helppo kiertää vihapuheen suitsemiseen kehitettyjä tekoälytyökaluja. Tarkoituksellinen tai tahaton huono kielioppi ja kirjoitusvirheet voivat tehdä vihanlietsonnasta ja loukkauksista tekoälylle vaikeita tunnistaa.

Ryhmä kokeili seitsemän uuden tunnistamistyökalun tarkkuutta. Kaikki reputtivat testit.

Nykyaikaiset luonnollisen kielen prosessointiin käytetyt mallit pystyvät luokittelemaan tekstiä merkkien, sanojen ja lauseiden piirteiden perusteella. Kun mallit joutuvat analysoimaan tekstidataa, jollaista ei ole käytetty niiden opettamiseen, tulosten laatu alkaa kärsiä.

”Lisäsimme vihapuheeksi tai loukkaavaksi määriteltyjen kommenttien sekaan kirjoitusvirheitä, muokkasimme sanojen rajoja tai lisäsimme joukkoon neutraaleja sanoja. Välilyöntien poistaminen sanojen välistä osoittautui englanninkielisen sisällön manipuloinnissa tehokkaimmaksi. Kaikkia keinoja yhdistelemällä saimme jopa Googlen kommenttien arvottamiseen käyttämän Perspective-työkalun sekaisin”, kertoo Tommi Gröndahl, Aalto-yliopiston tohtorikoulutettava.

Google Perspective luokittelee kommenttien loukkaavuutta tai ”toksisuutta” eri tekstianalyysin menetelmien avulla. Vuonna 2017 Washingtonin yliopiston tutkijat osoittivat, että Perspectiveä voi kuitenkin huijata lisäämällä tekstiin pieniä kirjoitusvirheitä.

Gröndahl havaitsi kollegoineen, että Perspective on sittemmin oppinut tunnistamaan myös kirjoitusvirheet, mutta se on edelleen huijattavissa muunlaisella manipuloinnilla, esimerkiksi poistamalla välilyöntejä ja lisäämällä harmittomia sanoja, kuten love, ’rakkaus’.

Perspectiven ja monen muun edistyneen vihapuheentunnistimen seulan läpäisi esimerkiksi lause ”I hate you” (”minä vihaan sinua”), kun se muokattiin muotoon ”Ihateyou love”.

Tutkijat huomauttavat, että asiayhteys määrittää pitkälti sen, tulkitaanko yksittäinen kommentti vihaksi vai vain asiattomaksi tai mauttomaksi. Vihapuhe on subjektiivista ja kontekstisidonnaista, ja tutkijoiden mukaan pelkät koneelliset tekstianalyysimenetelmät eivät riitä sen tarkkaan tunnistamiseen.

”Ihmiset muuttavat toimintaansa ja alkavat kokeilla eri tapoja kirjoittaa, koska he haluavat välttää kiinnijäämistä. Ollakseen tehokas tekoäly tarvitsee avukseen ihmisen tekemää tulkintaa”, uskoo tutkimusryhmän johtaja, Aalto-yliopiston professori N. Asokan.

Tekstiä analysoivien koneoppimismallien kehittämisessä tulisi tutkijoiden mukaan kiinnittää huomiota mallien opettamiseen käytettävän datan laatuun ja monipuolisuuteen, eikä niinkään mallien rakenteiden hiomiseen.

Ryhmän tulokset osoittavat myös, että vihapuheentunnistimet voisivat olla nykyistä tarkempia, jos ne analysoisivat tekstiä yksittäisten merkkien ja niiden yhdistelmien tasolla. Lisäksi kommenttien kontekstin luokittelua pitäisi saada hienovaraisemmaksi, jotta mallit osaisivat erottaa toisistaan esimerkiksi rasismin, seksismin ja henkilökohtaiset hyökkäykset.

Tutkimus tehtiin yhteistyössä Aalto-yliopiston Secure Systems -ryhmän ja Padovan yliopiston tutkijoiden kanssa. Tulokset esitellään lokakuussa ACM AISec -konferenssissa Torontossa.

Ryhmän artikkeli ”All You Need is "Love": Evading Hate-speech Detection” on osa Aalto-yliopiston Secure Systems -ryhmän projektia, joka tutkii tekstianalyysin keinoin valheellisen tai vilpillisen sisällön tunnistamista verkossa.

Tutkimusartikkeli:

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti, N.Asokan:
All You Need is "Love": Evading Hate-speech Detection.
https://arxiv.org/abs/1808.09115

Lisätietoja:
Tommi Gröndahl, tohtorikoulutettava
Aalto-yliopisto
Secure Systems -ryhmä
[email protected]
puh. 0400 426 523

N. Asokan, professori
Aalto-yliopisto
Secure Systems -ryhmä
[email protected]
puh. 050 483 6465

Lisää tästä aiheesta

Revontuliäänten fysiikkaa. Kuva: Unto K. Laine
Tiedotteet, Tutkimus ja taide Julkaistu:

Revontulten räiskeet ja rätinät liittyvät maapallon sähkömagneettisiin resonansseihin







Uusi tutkimus osoittaa, että 70–80 metrin korkeudessa syntyvät äänet ovat seurausta Schumann-resonanssien vahvistumisesta.

Kuvituskuva, jonka pohjana käytetty visualisointia eduskuntavaaleihin liittyvistä aihetunnisteista
Tiedotteet Julkaistu:

Suomalaiset jakoivat innottomasti bottien vaaleihin liittyviä tviittejä

Bottien yritykset vaikuttaa kevään vaaleihin jäivät vähäiseksi, paljastuu ELEBOT-hankkeen loppuraportista. Botit keskustelivat suhteessa tavallisia käyttäjiä enemmän tietyistä teemoista.
breakben aivomittausanturi kuvaaja marko havu
Tiedotteet, Tutkimus ja taide Julkaistu:

Aivokuvantamistekniikoiden yhdistelmä voi tarkentaa syöpädiagnostiikkaa

BREAKBEN-hankkeessa luodaan pohjaa entistä tarkemmalle aivokuvantamiselle.
Wood chips photo by Eeva Suorlahti
Yhteistyö, Tiedotteet, Tutkimus ja taide Julkaistu:

Aalto-yliopisto, Savonlinnan kaupunki ja Xamk tiivistävät yhteistyötään

Tavoitteena uusien biotalousinnovaatioiden vauhdittaminen.
  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu