Uutiset

Vihapuhetta tunnistavat tekoälyt menevät sekaisin ”rakkaudesta”

Tutkijat osoittivat, että sosiaalisessa mediassa ja verkkopalveluissa käytettävät vihapuheentunnistimet ovat helposti ihmisten huijattavissa.
Google Perspective arvioi verkkokommentteja loukkaavuuden perusteella. Vihapuheeksi alun perin tunnistettu lause läpäisee seulan, kun se sotketaan kirjoitusvirheellä ja sanalla ’rakkaus’.

Vihapuheen ja loukkaavan kommentoinnin määrä verkossa vain kasvaa. Sen hillitsemiseksi tarvitaan automaattisia työkaluja, jotka tunnistavat verkkopalvelujen sääntöjen vastaisen tai jopa laittoman sisällön.

Nyt Aalto-yliopiston Secure Systems -tutkimusryhmä on kuitenkin löytänyt parhaistakin koneoppimiseen perustuvista vihapuheentunnistimista merkittäviä heikkouksia. Käyttäjien on yllättävän helppo kiertää vihapuheen suitsemiseen kehitettyjä tekoälytyökaluja. Tarkoituksellinen tai tahaton huono kielioppi ja kirjoitusvirheet voivat tehdä vihanlietsonnasta ja loukkauksista tekoälylle vaikeita tunnistaa.

Ryhmä kokeili seitsemän uuden tunnistamistyökalun tarkkuutta. Kaikki reputtivat testit.

Nykyaikaiset luonnollisen kielen prosessointiin käytetyt mallit pystyvät luokittelemaan tekstiä merkkien, sanojen ja lauseiden piirteiden perusteella. Kun mallit joutuvat analysoimaan tekstidataa, jollaista ei ole käytetty niiden opettamiseen, tulosten laatu alkaa kärsiä.

”Lisäsimme vihapuheeksi tai loukkaavaksi määriteltyjen kommenttien sekaan kirjoitusvirheitä, muokkasimme sanojen rajoja tai lisäsimme joukkoon neutraaleja sanoja. Välilyöntien poistaminen sanojen välistä osoittautui englanninkielisen sisällön manipuloinnissa tehokkaimmaksi. Kaikkia keinoja yhdistelemällä saimme jopa Googlen kommenttien arvottamiseen käyttämän Perspective-työkalun sekaisin”, kertoo Tommi Gröndahl, Aalto-yliopiston tohtorikoulutettava.

Google Perspective luokittelee kommenttien loukkaavuutta tai ”toksisuutta” eri tekstianalyysin menetelmien avulla. Vuonna 2017 Washingtonin yliopiston tutkijat osoittivat, että Perspectiveä voi kuitenkin huijata lisäämällä tekstiin pieniä kirjoitusvirheitä.

Gröndahl havaitsi kollegoineen, että Perspective on sittemmin oppinut tunnistamaan myös kirjoitusvirheet, mutta se on edelleen huijattavissa muunlaisella manipuloinnilla, esimerkiksi poistamalla välilyöntejä ja lisäämällä harmittomia sanoja, kuten love, ’rakkaus’.

Perspectiven ja monen muun edistyneen vihapuheentunnistimen seulan läpäisi esimerkiksi lause ”I hate you” (”minä vihaan sinua”), kun se muokattiin muotoon ”Ihateyou love”.

Tutkijat huomauttavat, että asiayhteys määrittää pitkälti sen, tulkitaanko yksittäinen kommentti vihaksi vai vain asiattomaksi tai mauttomaksi. Vihapuhe on subjektiivista ja kontekstisidonnaista, ja tutkijoiden mukaan pelkät koneelliset tekstianalyysimenetelmät eivät riitä sen tarkkaan tunnistamiseen.

”Ihmiset muuttavat toimintaansa ja alkavat kokeilla eri tapoja kirjoittaa, koska he haluavat välttää kiinnijäämistä. Ollakseen tehokas tekoäly tarvitsee avukseen ihmisen tekemää tulkintaa”, uskoo tutkimusryhmän johtaja, Aalto-yliopiston professori N. Asokan.

Tekstiä analysoivien koneoppimismallien kehittämisessä tulisi tutkijoiden mukaan kiinnittää huomiota mallien opettamiseen käytettävän datan laatuun ja monipuolisuuteen, eikä niinkään mallien rakenteiden hiomiseen.

Ryhmän tulokset osoittavat myös, että vihapuheentunnistimet voisivat olla nykyistä tarkempia, jos ne analysoisivat tekstiä yksittäisten merkkien ja niiden yhdistelmien tasolla. Lisäksi kommenttien kontekstin luokittelua pitäisi saada hienovaraisemmaksi, jotta mallit osaisivat erottaa toisistaan esimerkiksi rasismin, seksismin ja henkilökohtaiset hyökkäykset.

Tutkimus tehtiin yhteistyössä Aalto-yliopiston Secure Systems -ryhmän ja Padovan yliopiston tutkijoiden kanssa. Tulokset esitellään lokakuussa ACM AISec -konferenssissa Torontossa.

Ryhmän artikkeli ”All You Need is "Love": Evading Hate-speech Detection” on osa Aalto-yliopiston Secure Systems -ryhmän projektia, joka tutkii tekstianalyysin keinoin valheellisen tai vilpillisen sisällön tunnistamista verkossa.

Tutkimusartikkeli:

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti, N.Asokan:
All You Need is "Love": Evading Hate-speech Detection.
https://arxiv.org/abs/1808.09115

Lisätietoja:
Tommi Gröndahl, tohtorikoulutettava
Aalto-yliopisto
Secure Systems -ryhmä
[email protected]
puh. 0400 426 523

N. Asokan, professori
Aalto-yliopisto
Secure Systems -ryhmä
[email protected]
puh. 050 483 6465

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Havainnekuva rintasyöpäsoluista mikroskoopissa
Mediatiedotteet Julkaistu:

Rintasyöpäsolu leviää tekemällä kudosmateriaaliin käytäviä – uusi mittausmenetelmä paljasti hämmästyttävän tiedon solun käyttämistä voimista

Mittaukset osoittivat, että solu tuottaa voimasykäyksiä paljon lyhyemmissä sykleissä kuin aiemmin on ajateltu. Aalto-yliopiston ja Stanfordin yliopiston kehittämä mittausmenetelmä voi auttaa rintasyöpätutkimusta ja vauhdittaa lääkkeiden kehitystä.
Tuoleja ravintolatilassa, taustalla asiakaspalvelutilanne
Mediatiedotteet Julkaistu:

Uusi teknologia voi auttaa tekemään kestäviä ruokavalintoja

Lohkoketjusovellus antaa tietoa ruoan ympäristövaikutuksista ja paremman kokonaiskuvan eri valintojen merkityksestä.
A schematic showing two circular light waves coming from the left, passing through a square representing the modulator, and emerging as a single linear light beam.
Mediatiedotteet Julkaistu:

Valollakin on kätisyys – ja sen hallitseminen tehostaa optista teknologiaa

Uusi optinen modulaattori on miljoonaa kertaa nykyisiä vaihtoehtoja nopeampi. Se voi parantaa optisten teknologioiden suorituskykyä monissa sovelluksissa, viestinnästä tietotekniikkaan.
Lauri Parkkonen and the family cat, Roosa. Photo: Lauri Parkkonen, Aalto, University.
Mediatiedotteet Julkaistu:

Mitä koirien ja kissojen aivoissa tapahtuu? Uusi kuvantamismenetelmä selvittää lemmikkien mielen saloja

Aalto-yliopiston professori Lauri Parkkosen ryhmä on vuosia kehittänyt kvanttioptisia antureita aivomagneettikäyrän eli magnetoenkefalografian (MEG) mittaamiseen. Toisin kuin perinteisessä MEG-laitteessa, jossa hyvin kylmässä toimivat suprajohtavat anturit vaativat ympärilleen senttimetrejä paksun lämpöeristeen, nämä uudet huoneenlämpötilassa toimivat anturit voidaan tuoda suoraan pään pinnalle. Tämä mahdollistaa entistä tarkemmat aivomagneettikäyrien mittaukset. MEG-kuvantaminen on tutkittavalle kivutonta ja turvallista.