Uutiset

Tutkijat kehittivät uuden menetelmän mikroakkujen valmistamiseksi

Sähkökemiallisesti aktiivisia orgaanisia litiumelektrodikalvoja käyttäen voidaan tehdä aiempaa tehokkaampia mikroakkuja.

Tutkijat testasivat akkumateriaalia nappikennoilla. Kuva Mikko Raskinen / Aalto-yliopisto

Entistä pienemmät laitteet tarvitsevat entistä pienempiä akkuja. Aalto-yliopiston tutkijat ovat kehittäneet sähkökemiallisesti aktiivisia orgaanisia, ohuita litiumelektrodikalvoja, joita käyttäen voidaan tehdä aiempaa tehokkaampia mikroakkuja. Tämä onnistui, kun tutkijat valmistivat litiumtereftalaattia, litiumioniakulle äskettäin kehitettyä anodimateriaalia, käyttäen yhdistettyä atomi-/molekyylikerroskasvatustekniikkaa (ALD/MLD).

Mikroakkujen valmistuksessa haaste on saada ne varastoimaan suuria määriä energiaa pieneen tilaan. Yksi keino parantaa energiatiheyttä on valmistaa akut kolmiulotteiseen 3D-mikrorakenteeseen perustuen. Se voi lisätä tehollisen pinta-alan akun sisällä jopa monikymmenkertaiseksi. Materiaalien valmistus tarkoitusta varten on kuitenkin osoittautunut erittäin hankalaksi.

– ALD on loistava menetelmä valmistaa 3D-mikrorakenteeseen sopivia akkumateriaaleja. Menetelmämme osoittaa, että ALD-tekniikalla voidaan tuottaa orgaanisia elektrodimateriaaleja, mikä lisää mahdollisuuksia valmistaa tehokkaita mikroakkuja, kertoo Mikko Nisula, tohtorikoulutettava Aalto-yliopistosta.

Tohtoriopiskelija Mikko Nisula pitää terässubstraatille pinnoitettua näytettä kädessä. Taustalla ALD-reaktori. Kuva Mikko Raskinen / Aalto-yliopisto

Tutkijoiden kehittämä litiumtereftalaatin kasvatusprosessi noudattaa hyvin ALD-tyyppisen kasvun perusperiaatteita, mukaan lukien itsekyllästyvät pintareaktiot, jotka ovat välttämättömyys pyrittäessä valmistamaan kolmiulotteisella arkkitehtuurilla varustettuja mikrolitiumlaitteita. Kerrostetut kalvot ovat kiteisiä koko 200−280 °C:n kerrostamislämpötila-alueella, mikä on erittäin toivottava ominaisuus elektrodimateriaalille, mutta melko epätavallinen orgaanisia ja epäorgaanisia materiaaleja sisältäville ohuille hybridikalvoille. Litiumtereftalaattikalvojen varausominaisuudet ovat erinomaiset, eikä johtavia lisäaineita tarvita. Elektrodin suorituskykyä voidaan tehostaa entisestään kasvattamalla litiumtereftalaatin päälle ohut suojakerros LiPON-elektrolyyttimateriaalia. Sen avulla litiumtereftalaation stabiilisuutta voidaan parantaa ja näin materiaalin kapasiteetista säilytetään 200 lataus-/purkukerran jälkeen yhä yli 97 %.

Menetelmää koskeva tutkimus on julkaistu uusimmassa Nano Letters -numerossa.

Lisätiedot:

Tohtorikoulutettava Mikko Nisula, Aalto-yliopisto kemian tekniikan korkeakoulu
[email protected]

Professori Maarit Karppinen, Aalto-yliopiston kemian tekniikan korkeakoulu [email protected], puhelin: +358 50 384 1726

Artikkeli:

Mikko Nisula and Maarit Karppinen: Atomic/Molecular Layer Deposition of Lithium Terephthalate Thin Films as High Rate Capability Li-Ion Battery Anodes. Nano Lett., 2016, 16 (2), pp 1276–1281.

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lisää tästä aiheesta

Taiteellinen kuva panssaroidusta superhydrofobisesta pinnasta, joka kestää iskuja ja hylkii nesteitä tehokkaasti. Kuva: Juha Juvonen.
Yhteistyö, Mediatiedotteet, Tutkimus ja taide Julkaistu:

Vettä hylkivä panssaripinnoite voi pian tehostaa aurinkopaneeleja ja tuoda suksiin lisäluistoa

Kesäkuussa Aalto-yliopiston tutkijat kertoivat kehittämästään pinnoitteesta Nature-lehdessä. Nyt pinnoitteesta aletaan kehittää lukuisia kaupallisia sovelluksia muun muassa rakennus- ja elektroniikkateollisuuden kanssa.
The computer game could help in the treatment of depression alongside therapy and drug treatment. Picture: Matias Palva’s research group, Aalto University.
Mediatiedotteet Julkaistu:

Tutkijat kehittävät tietokonepeliä masennuksen hoitoon

Terapeuttisen toimintavideopelin pelaaminen voi helpottaa masennuspotilaiden oireita ja parantaa heidän kognitiivista toimintakykyään.
putretti-lannoite
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Tutkijat kehittivät tuhkasta ja kompostista metsien täsmälannoitteen

Putretiksi nimetty lannoite sisältää fosforia, kaliumia, hiiltä ja hitaasti vapautuvaa typpeä, jotka edistävät puiden kasvua. Sen valmistus kuluttaa selvästi vähemmän energiaa kuin keinolannoitteiden ja vähentää myös louhimisen tarvetta.
An electron microscope image of the device used to extract entangled electrons
Mediatiedotteet Julkaistu:

Askel kohti lähes rajatonta laskentatehoa – tutkijat loivat kvanttilomittumista lämmön avulla

Helppo ja hallittava kvanttilomittuminen lisää kokonaislaskentakapasiteettia ja mahdollistaa muun muassa kvanttisalauksen eli turvallisen tiedonsiirron suurillakin etäisyyksillä.