Uutiset

Tekoäly tunnistaa koneen tekaisemat ravintola- ja tuotearvostelut ihmistä tarkemmin

Tutkijat opettivat tekoälyn myös luomaan uskottavia arvioita. Tekoälyn avulla verkosta voisi siivota automaattisesti tehtailtuja arvioita.
Fake reviews by Secure Systems research group at department of computer science

Monet verkkopalvelut, kuten TripAdvisor, Yelp ja Amazon, listaavat käyttäjien omia arvosteluja palveluista ja tuotteista. Muiden arvioita luetaan tarkasti, ja niihin luottaa miltei yhdeksän kymmenestä kuluttajasta. Jopa 40 prosenttia perustaa ostopäätöksensä vain muutaman käyttäjän arvioon, ja ihmiset käyttävät 30 prosenttia enemmän rahaa kehuttuihin tuotteisiin.

Kaikki vertaisarviot eivät kuitenkaan ole aitoja. Ihmisten kirjoittamia tekaistuja arvioita tehtaillaan jo paljon, mutta tulevaisuudessa yhä useampi käyttäjäarvio saattaa olla koneen tekemä.

Aalto-yliopiston tohtorikoulutettava Mika Juutin mukaan arvioiden luominen algoritmien avulla on nykyään yksinkertaista, tarkkaa ja nopeaa. Useimmiten ihminen ei erota aitoa, toisen ihmisen kirjoittamaa arvostelua algoritmien tekemästä.

”Vilpillisesti toimivat yritykset voivat yrittää kasvattaa myyntiään luomalla keinotekoisesti positiivista kuvaa itsestään – tai tuottamalla massoittain negatiivisia arvioita kilpailijoistaan. Motivaatio on tietenkin raha: verkon vertaisarviot ovat elintärkeitä matkakohteille, hotelleille, palveluntarjoajille ja kuluttajatuotteille”, Juuti sanoo.

Viime vuonna Chicagon yliopiston tutkijat kuvailivat, miten opettaa syvä neuroverkko, koneoppimismalli, kolmella miljoonalla Yelp-sivustolta poimitulla ravintola-arvostelulla. Heidän mallinsa oppi luomaan ravintola-arvosteluja merkki kerrallaan.

Tekoälymallin työn jäljessä oli silti ongelma: se ei aina pysynyt aiheessa. Lasvegasilaisen japanilaisen ravintolan arvostelussa malli saattoi viitata italialaiseen ravintolaan Baltimoressa. Tällaiset virheet herättävät tietenkin ihmisen epäilyksen heti.

Juutin tutkijatiimi sai mallin pysymään asiassa käyttämällä Neural Machine Translation -menetelmää. Se luo tai kääntää tekstiä lausekokonaisuus kerrallaan yksittäisten sanojen sijaan. Kun malli opetettiin assosioimaan arvion tähtiluokitus, ravintolan nimi, kaupunki ja ruokaan liittyvät asiasanat varsinaisiin arvioteksteihin, tekaistut arviot alkoivat muuttua uskottaviksi.

”Teettämässämme käyttäjätutkimuksessa näytimme oikeita, ihmisten kirjoittamia arvioita ja koneen kirjoittamia arvioita käyttäjille ja pyysimme heitä tunnistamaan koneen kirjoittamat arviot. Jopa 60 prosenttia mallimme luomista arvioista meni koehenkilöille täydestä”, Juuti kertoo.

Tutkijat kehittivät myös luokittelumenetelmän tunnistamaan uuden mallinsa luomia tekaistuja arvosteluja. Menetelmä tunnisti väärennökset tehokkaasti. Etenkin arvostelut, joiden epäaitoudesta koehenkilöiden oli erityisen hankalaa olla varmoja, uusi menetelmä tunnisti selvästi useammin kuin ihminen.

Tutkimus tehtiin yhteistyössä Aalto-yliopiston Secure Systems -ryhmän ja japanilaisen Wasedan yliopiston tutkijoiden kanssa. Ryhmän artikkeli “Stay On-Topic: Generating Context-specific Fake Restaurant Reviews” on osa Aalto-yliopiston Secure Systems -ryhmän projektia, joka tutkii tekstianalyysin keinoin valheellisen tai vilpillisen sisällön tunnistamista verkossa.

(Vastaus kuvan kysymykseen: arvio on ryhmän tekoälymallin luoma.)

Tutkimusartikkeli:
Mika Juuti, Bo Sun, Tatsuya Mori, N. Asokan:
Stay On-Topic: Generating Context-specific Fake Restaurant Reviews.
https://arxiv.org/abs/1805.02400

Lisätietoja:
Mika Juuti, tohtorikoulutettava
Aalto-yliopisto
[email protected]
puh. +358 50 560 7944

N. Asokan, professori
Aalto-yliopisto
[email protected]
puh. +358 50 483 6465

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lisää tästä aiheesta

Super hydrophobic surfaces by Juha Juvonen
Tiedotteet Julkaistu:

Läpimurto materiaalitutkimuksessa: ainutlaatuinen panssaripinnoite karkottaa veden ja lian eikä hajoa kovastakaan iskusta

Uutta superhydrofobista pinnoitetta voi käyttää esimerkiksi aurinkopaneeleissa, antimikrobisissa pinnoitteissa, koneissa ja ajoneuvoissa.
Learning Centre graphics
Tiedotteet Julkaistu:

Oppimiskeskuksen verkkosivuosoite vaihtuu

Oppimiskeskuksen verkkosivut siirtyvät 3.6.2020 alkaen aalto.fi-sivujen alle.
SARS-COVID19
Tiedotteet Julkaistu:

Suomalaisstartupin keksintö vauhdittaa koronaviruksen testaamista

Aalto-yliopiston ja Helsingin yliopiston tutkijoiden perustama XFold Imaging Oy:n kehitti nanopinnoitetun lasilevyn, joka monikymmenkertaistaa mikroskoopin tarkkuuden. Sen ansiosta koronavirus voidaan tunnistaa näytteestä jopa päivää aiemmin nykyiseen verrattuna.
MRI Scanning photo Adolfo Vera Aalto University
Tiedotteet, Tutkimus ja taide Julkaistu:

Tutkijat kehittävät liikuteltavaa magneettikuvauslaitetta, joka mahtuu rekan sijasta pakettiautoon

Uusi teknologia voi auttaa esimerkiksi kriisialueiden terveydenhoidossa. Sille voi löytyä käyttökohteita myös hyvinvointialalla.