Teoriasta käytäntöön
Yleiskäyttöiset kvanttitietokoneet olivat vuosikaudet pelkkä yliopistojen laboratorioissa pyöritelty teoreettinen ajatus. Vasta viime vuosina teoria on alkanut muuttua käytännöksi.
Yhden suurimmista käänteistä toi nettimammutti Googlen kvanttilaskin Sycamore loppuvuodesta 2019. Google kertoi laitteensa laskeneen 53 kvanttibitillään reilussa kolmessa minuutissa laskutoimituksen, joka olisi vienyt maailman tuolloin vahvimmalta supertietokoneelta Summitilta 10 000 vuotta.
Joulukuussa 2020 uutisoitiin puolestaan kvanttitekniikkapanostuksistaan tunnetun Kiinan Jiuzhang-kvanttitietokoneesta. Jiuzhangin väitettiin laskeneen muutamassa minuutissa tehtävän, johon supertietokone olisi tarvinnut 2,5 miljardia vuotta.
Juuri tällaiset suorituserot vihjaavat murroksista, joita kvanttilaskennan tulevaisuus on eteemme tuomassa.
Hakonen sanoo, että yksi ilmeisimmistä meitä kaikkia koskevista kvanttilaskennan alueista on tietoturva. Käytetyimmät salausmenetelmät murtuvat tulevaisuuden kvanttitietokoneessa niin sanotun Shorin algoritmin avulla.
”Kaikki tällä hetkellä salattu informaatio voidaan nopeasti purkaa”, Hakonen sanoo.
Viisikymmentä kotimaista kubittia
Kukaan ei osaa vielä varmuudella sanoa, milloin salauksen purkamiseen pystyvien yleiskäyttöisten kvanttitietokoneiden aika on käsillä. Tietoturvaan rakennetaan jo ratkaisuja, jotka kestävät myös kvanttitietokoneiden numeronmurskauksen.
Suomessa tutkimusta tehdään esimerkiksi Teknologian tutkimuskeskus VTT:n, Aalto-yliopiston ja Helsingin yliopiston Post-Quantum Cryptography -hankkeessa.
Tänä vuonna valmistuu myös VTT:n tilaaman kvanttitietokoneen ensimmäinen vaihe, jonka toimittaa Aalto-yliopistossa alkunsa saanut IQM Finland. Kotimainen kvanttitietokone on tärkeä virstanpylväs suomalaiselle kvanttiteknologian tutkimukselle.
Otaniemen mikro- ja nanoteknologiarakennus Micronovaan sijoitettavaan laitteeseen tulee ensin viisi ja lopulta vuoteen 2024 mennessä viisikymmentä kubittia.
Kvanttipiirien jäähdytykseen käytettävät tieteelliset huippupakastimet eli kryostaatit toimittaa Teknillisessä korkeakoulussa alkunsa saanut, maailmankuulu Bluefors-yritys.
”Bluefors lähti liikkeelle meidän kylmälaboratoriosta noin viisitoista vuotta siten”, Hakonen sanoo.
Hakonen huomauttaa, että kvanttitietokoneisiin liitetyt valtavat odotukset näkyvät niin alan yrityksiin rekrytoituina tutkijoina kuin varhaisen vaiheen pääomasijoituksina.
”Miten ala sitten kehittyy, se onkin hankalampi kysymys.”
Lääketutkimuksesta lennonohjaukseen
Jääkaapin kokoiset kvanttitietokoneet eivät ole korvaamassa kannettavia tietokoneitamme tai taskujemme matkapuhelimia. Kvanttilaskenta edellyttää tarkoin valittuja erityisongelmia, jotka voidaan kirjoittaa kvanttiominaisuuksia hyödyntävän algoritmin muotoon.
Kvanttitietokoneiden vaikutukset arkeemme perustuvat suurteholaskennan mahdollisuuksiin.
Sopivia haasteita kvanttitietokoneille on muun muassa uusien materiaalien tai kemiallisten yhdisteiden tutkimuksessa. Esimerkiksi lääkeaineiden molekyylien tehokas mallintaminen on vaikeaa perinteisillä supertietokoneilla.
Hakonen sanoo, että kvanttilaskenta soveltuu myös kaupungin liikennevirtojen ohjailuun tai ilmastonmuutoksen ennustamiseen.
Alan kaupallisena pioneerina tunnettu kanadalainen D-Wave Systems kehittää jo kvanttiteknologiaa hyödyntäviä superlaskimia käytettäväksi esimerkiksi monimutkaisia optimointiongelmia sisältävässä lennonohjauksessa.
D-Waven kvanttijäähdytykseen perustuvat ratkaisut eivät kuitenkaan ole varsinaisia kvanttitietokoneita samassa mielessä kuin VTT:n laite.
”Lennonohjaukseen ei tarvita universaalia kvanttitietokonetta. Siihen riittää järjestelmä, johon voidaan ohjelmoida sisään käsiteltävä ongelma”, Hakonen sanoo.
Anturit tuovat mullistukset
Kun sovellusalueet laajentuvat, kvanttifysiikan perusteiden tuntemusta tarvitaan yhä useammalla ammattialalla. Aalto-yliopistossa on jo käynnissä kvanttiteknologian kandidaattiohjelma.
Nopeasti etenevän alan opetuksessa on Hakosen mukaan myös aukkoja. Esimerkiksi kvanttialgoritmien kursseja ei ole toistaiseksi tarjolla.
”Tarvitaan ohjelmoijia, jotka osaavat ohjelmoida kvanttitietokoneita ja kvanttiteknologiaan pohjautuvia antureita”, Hakonen sanoo.
Juuri kvanttialgoritmeilla tehostetut kvanttianturit ovat kasvamassa kvanttitekniikoiden tärkeäksi sovellusalueeksi. Aikaisempaa tarkemmat mittalaitteet voivat tuoda apua yhtä lailla niin seismologiaan, malminetsintään kuin materiaaliteollisuuden virheidenetsintään.
Yksi kiinnostavimmista kvanttianturien sovellusalueista on ihminen itse. Aivojemme 86 miljardin hermosolun toiminnassa on edelleen kartoittamattomia alueita.
Aalto-yliopistossa on tutkittu esimerkiksi uudenlaisia pään muotoon mukautuvia anturistoja aivojen magneettikenttien mittaamiseen. Parhaimmillaan tulokset voivat olla lähes yhtä tarkkoja kuin jos mittaukset olisi tehty pääkallon sisältä.
Hakonen sanoo, että kvanttivahvisteiset anturit ovat ensin niin kalliita tuotteita, että hinta rajoittaa niiden käyttöä. Myöhemmin anturien soveltaminen voi kuitenkin laajentua massatuotteisiin. Esimerkiksi virtuaalitodellisuudessa niiden hyödyntäminen voi avata aivan uusia ulottuvuuksia.
Kun ihmisaivojen signaaleja mittaavat kvanttitehostetut anturit yhdistetään koneoppimisen tuottamiin tulkintoihin, kvanttitekniikan mahdollisuudet alkavat kuulostaa jo rajattomilta.
Hakonen arvelee, että jonakin päivänä me ohjaamme tietokoneita ja muita laitteita ajatuksillamme.
”Tulevaisuudessa näitä tekniikoita voi mahdollisesti käyttää myös aivokäyttöliittymissä – mutta se on jo science fiction -tason juttu.”