Uutiset

Koneoppimisesta apua kemisteille: algoritmien avulla minimienergiapolut ja satulapisteet löytyvät tehokkaammin

Koneoppiminen avaa uusia mahdollisuuksia monille aloille – myös kemian tutkimukseen, minkä osoittaa Suomen tekoälykeskuksessa tehty tuore väitöstutkimus.
Machine learning in theoretical chemistry
Lähde: J. Chem. Phys. 147, 152720 (2017). Julkaistu AIP Publishingin luvalla.

 

Aalto-yliopiston tohtorikoulutettava Olli-Pekka Koistinen kehitti väitöskirjassaan gaussisiin prosesseihin perustuvia koneoppimisalgoritmeja, jotka tehostavat minimienergiapolkujen ja satulapisteiden etsintää, sekä testasi niiden toimivuutta.

Teoreettisessa kemiassa minimienergiapolkujen ja satulapisteiden määrittäminen on yksi eniten aikaa ja laskentaresursseja kuluttavista tehtävistä. Laskenta-aikaa kuluu etenkin atomikonfiguraation tarkan energian ja gradienttivektorin määrittämiseen. Se joudutaan tekemään erikseen jopa sadoissa konfiguraatioavaruuden pisteissä.

Koneoppimista hyödyntävät menetelmät voivat vähentää tarvittavien havaintopisteiden ja raskaiden energialaskujen määrää murto-osaan siitä, mitä perinteiset menetelmät vaativat, ja siten nopeuttaa ja keventää laskentaa.

Minimienergiapolut kulkevat potentiaalienergiapinnalla, joka kuvaa järjestelmän – esimerkiksi molekyylin – energiaa tiettyjen parametrien suhteen. Yleensä nämä parametrit kertovat atomien sijainnin. Energiapinnan paikalliset minimikohdat vastaavat systeemin vakaita tiloja. Minimienergiapolut yhdistävät näitä vakaita tiloja toisiinsa ja kuvaavat mahdollisia reaktiomekanismeja.

”Suunnistajana ajattelen energiapintaa karttana. Pysyvät atomikonfiguraatiot näkyvät kartassa kuoppina. Minimienergiapolku on reitti kahden tällaisen tilan välillä. Se pysyy koko ajan mahdollisimman matalana. Polun korkein kohta on satulapisteessä, jolloin se pääsee pujahtamaan kuopasta toiseen mahdollisimman matalalta”, Koistinen selittää.

Perinteisesti minimienergiapolkuja ja satulapisteitä on etsitty iteratiivisilla menetelmillä, jotka etenevät energiapinnalla pienin askelin. Koneoppimisen ja tilastollisten mallien avulla aikaisemmat havainnot voidaan käyttää hyväksi energiapinnan mallintamiseksi, jolloin tavoitteeseen voidaan päästä huomattavasti vähemmillä iteraatioilla.

Koneoppiminen tarjoaa siis tehtävään tehokkaamman ja kevyemmän sekä sitä kautta myös aiempaa halvemman ja ympäristöystävällisemmän keinon. Se voi myös avata mahdollisuuksia sellaisten ongelmien tutkimiseen, joihin käytännön resurssit eivät ole aikaisemmin riittäneet. ”Tämä on yksi esimerkki lisää siitä, mihin koneoppimismenetelmiä voi käyttää”, Koistinen sanoo.

Diplomi-insinööri Olli-Pekka Koistinen väittelee torstaina 9. tammikuuta 2020 Aalto-yliopiston perustieteiden korkeakoulussa Kandidaattikeskuksen salissa E (Y124). Väitöskirjan nimi on "Algorithms for Finding Saddle Points and Minimum Energy Paths Using Gaussian Process Regression".

Linkki väitöskirjaan: https://aaltodoc.aalto.fi/handle/123456789/41794

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lisää tästä aiheesta

KTT Sami Itani
Tutkimus ja taide Julkaistu:

Tohtorin urapolku: esittelyssä toimitusjohtaja Sami Itani

“Tohtoriopinnot – kuten lähes kaikki tietotyöt myös yrityselämässä - ovat tiimiperusteista projektityötä, jossa itse pääsee toimimaan oman työnsä projektipäällikkönä.”
kaksi naista istuu punaisilla tuoleilla studiossa keskustelemassa, taustalla musta verho ja keltainen lattia
Tutkimus ja taide, Opinnot Julkaistu:

Mitä voimme oppia pandemiasta?

Aalto-yliopiston studiokeskustelussa pohdittiin, millaisen tulevaisuuden rakennamme pandemiasta saatujen oppien pohjalta.
Machine Learning Coffee Seminar logo in purple and white colours
Tutkimus ja taide Julkaistu:

Machine Learning Coffee Seminar -sarja jatkuu kiinnostavilla puheilla

MLCS-sarja tuo yhteen eri tieteenalojen osaajia, joita yhdistää ainakin yksi asia: kiinnostus koneoppimiseen.
Aalto logo
Tutkimus ja taide, Yliopisto Julkaistu:

Professorit Markus Linder ja Tapani Vuorinen Suomalaisen Tiedeakatemian jäseniksi

Aalto-yliopiston kemian tekniikan korkeakoulusta biomolekulaaristen materiaalien professori Markus Linder ja puunjalostuksen kemian professori Tapani Vuorinen on valittu uusiksi jäseniksi Suomalaiseen Tiedeakatemiaan.