Uutiset

Koneoppimisesta apua kemisteille: algoritmien avulla minimienergiapolut ja satulapisteet löytyvät tehokkaammin

Koneoppiminen avaa uusia mahdollisuuksia monille aloille – myös kemian tutkimukseen, minkä osoittaa Suomen tekoälykeskuksessa tehty tuore väitöstutkimus.
Machine learning in theoretical chemistry
Lähde: J. Chem. Phys. 147, 152720 (2017). Julkaistu AIP Publishingin luvalla.

Aalto-yliopiston tohtorikoulutettava Olli-Pekka Koistinen kehitti väitöskirjassaan gaussisiin prosesseihin perustuvia koneoppimisalgoritmeja, jotka tehostavat minimienergiapolkujen ja satulapisteiden etsintää, sekä testasi niiden toimivuutta.

Teoreettisessa kemiassa minimienergiapolkujen ja satulapisteiden määrittäminen on yksi eniten aikaa ja laskentaresursseja kuluttavista tehtävistä. Laskenta-aikaa kuluu etenkin atomikonfiguraation tarkan energian ja gradienttivektorin määrittämiseen. Se joudutaan tekemään erikseen jopa sadoissa konfiguraatioavaruuden pisteissä.

Koneoppimista hyödyntävät menetelmät voivat vähentää tarvittavien havaintopisteiden ja raskaiden energialaskujen määrää murto-osaan siitä, mitä perinteiset menetelmät vaativat, ja siten nopeuttaa ja keventää laskentaa.

Minimienergiapolut kulkevat potentiaalienergiapinnalla, joka kuvaa järjestelmän – esimerkiksi molekyylin – energiaa tiettyjen parametrien suhteen. Yleensä nämä parametrit kertovat atomien sijainnin. Energiapinnan paikalliset minimikohdat vastaavat systeemin vakaita tiloja. Minimienergiapolut yhdistävät näitä vakaita tiloja toisiinsa ja kuvaavat mahdollisia reaktiomekanismeja.

”Suunnistajana ajattelen energiapintaa karttana. Pysyvät atomikonfiguraatiot näkyvät kartassa kuoppina. Minimienergiapolku on reitti kahden tällaisen tilan välillä. Se pysyy koko ajan mahdollisimman matalana. Polun korkein kohta on satulapisteessä, jolloin se pääsee pujahtamaan kuopasta toiseen mahdollisimman matalalta”, Koistinen selittää.

Perinteisesti minimienergiapolkuja ja satulapisteitä on etsitty iteratiivisilla menetelmillä, jotka etenevät energiapinnalla pienin askelin. Koneoppimisen ja tilastollisten mallien avulla aikaisemmat havainnot voidaan käyttää hyväksi energiapinnan mallintamiseksi, jolloin tavoitteeseen voidaan päästä huomattavasti vähemmillä iteraatioilla.

Koneoppiminen tarjoaa siis tehtävään tehokkaamman ja kevyemmän sekä sitä kautta myös aiempaa halvemman ja ympäristöystävällisemmän keinon. Se voi myös avata mahdollisuuksia sellaisten ongelmien tutkimiseen, joihin käytännön resurssit eivät ole aikaisemmin riittäneet. ”Tämä on yksi esimerkki lisää siitä, mihin koneoppimismenetelmiä voi käyttää”, Koistinen sanoo.

Diplomi-insinööriOlli-Pekka Koistinen väittelee torstaina 9. tammikuuta 2020 Aalto-yliopiston perustieteiden korkeakoulussa Kandidaattikeskuksen salissa E (Y124). Väitöskirjan nimi on "Algorithms for Finding Saddle Points and Minimum Energy Paths Using Gaussian Process Regression".

Linkki väitöskirjaan: https://aaltodoc.aalto.fi/handle/123456789/41794

  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

Professori Maria Sammalkorpi
Tutkimus ja taide Julkaistu:

Tutustu meihin: Professori Maria Sammalkorpi

Sammalkorpi on väitellyt tohtoriksi Teknillisestä korkeakoulusta vuonna 2004. Väiteltyään Sammalkorpi on toiminut tutkijana mm. Princetonin ja Yalen yliopistoissa sekä Aalto-yliopistossa.
Kuva: Tima Miroschnichenko, Pexels.
Mediatiedotteet Julkaistu:

Tutkimus: Matalan hierarkian organisaatioissa isoja periaatekysymyksiäkin ratkotaan porukalla Slackissa

Aalto-yliopiston alumni, vieraileva tutkijatohtori Lauri Pietinalho New Yorkin yliopiston Sternin kauppakorkeakoulusta ja Aalto-yliopiston apulaisprofessori Frank Martela selvittivät tuoreessa tutkimuksessa, miten matalan hierarkian organisaatiot käsittelevät yhteisiä toimintaperiaatteita vastakkainasettelutilanteissa ja miten auktoriteetti niissä toimii.
bakteereja ohjataan magneettikentän avulla
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Fyysikot saivat bakteerit uimaan lähes täydellisissä riveissä

Bakteerien ohjaaminen onnistui magneettikentän avulla. Löytö auttaa ymmärtämään bakteeripopulaatioiden käyttäytymistä ja voi jatkossa auttaa esimerkiksi kehittämään uuden sukupolven materiaaleja, joista kaavaillaan apua muun muassa lääkkeiden kohdennettuun kuljettamiseen kehon sisällä.
2020 rajanylitykset pohjoismaissa
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Tutkijat loivat ainutlaatuisen ennustemallin kuvaamaan pandemian leviämistä maiden rajojen yli

Pohjoismainen yhteishanke pureutui koronaviruksen leviämiseen vuonna 2020. Tutkimuksen avulla voidaan jatkossa ennakoida paremmin, milloin ja mitkä matkustusrajoitukset ovat pandemiaolosuhteissa tarkoituksenmukaisia.