Uutiset

Ennätyspieni juhlavuoden logo on vain millimetrin sadasosan mittainen

100-vuotiasta Suomea juhlistava logo tehtiin piistä samalla menetelmällä kuin maailman pienin Aalto-maljakko.
Suomen pienin juhlavuoden logo kahdesta eri kuvakulmasta nähtynä. Ensimmäiseen rakenteeseen kuvioitiin myös lippu. Kuvan alla oleva mittaskaala 5µm on millimetrin kahdessadasosa. Reunasta reunaan on siis matkaa melko tarkkaan millimetrin sadasosa. Kuvat: Nikolai Chekurov/Micronova, Aalto-yliopisto

Aalto-yliopistossa on Suomen juhlavuoden kunniaksi valmistettu piistä juhlavuoden virallisen logon mukainen rakenne. Nanotekniikan tohtori Nikolai Chekurov teki rakenteen Micronovan puhdastiloissa Espoon Otaniemessä. Menetelmänä hän käytti kohdistetun ionisuihkun ja kryögeenisen syväetsauksen yhdistelmää, jossa kohdetta pommitetaan ensin raskailla ioneilla ja sen jälkeen syövytetään ICP-RIE:llä, eli induktiivisesti kytketyllä plasmareaktiivisella ionietsauksella.

Samalla menetelmällä on aikaisemmin tehty maailman pienin Aalto-maljakko, johon mahtui 0.1 femtolitraa. Kyseessä ei ole standardimenetelmä, vaan sitä on kehitetty professori Ilkka TIttosen johtamassa Micro and Quantum Systems-tutkimusryhmässä useissa eri väitöstutkimuksissa.

”Menetelmä toimii niin, että tasaisen piikiekon pinnalle kirjoitetaan ensin ohuelti gallium-ioneja halutun kuvion, tässä tapauksessa siis juhlavuoden logon, mukaisesti. Sen jälkeen kiekkoa syövytetään kaasulla, jolloin ne kohdat, joissa on galliumia, jäävät jäljelle ja alueet, joissa sitä ei ole, syöpyvät pois paljastaen kirjoitetun kuvion. Mitä kauemmin syövytystä jatketaan, sen korkeampi rakenteesta tulee”, Chekurov selittää.

Menetelmällä paljon käytännön sovelluskohteita

Juhlavuoden logosta olisi menetelmällä voitu tehdä pienempikin, mutta Chekurov ja hänen kollegansa halusivat saada aikaan lähes virheettömän ja täsmälleen alkuperäisen logon designin muotoisen kappaleen. Sadasosamillimetrin kokoinen logo on niin pieni, että sen erottaa juuri ja juuri valomikroskoopilla. Kolmiulotteisen rakenteen ihailuun tarvitaan jo elektronimikroskooppia, sillä logon pienimmät rakenteet ovat alle mikrometrin, eli millimetrin tuhannesosan, kokoisia.

”Samalla valmistusmenetelmällä on toki paljon myös käytännön sovelluskohteita. Sillä voidaan valmistaa hyvin erilaisia mikrorakenteita, joita voidaan käyttää muun muassa fotoniikassa ja vaikka pienten nestemäärien mittaamisessa tai mekaanisina mikroantureina”, Ilkka Tittonen kertoo.

Lisätietoja:

Professori Ilkka Tittonen
Aalto-yliopisto
Micro and Quantum Systems -tutkimusryhmä
p. 040 543 7564 
[email protected]

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Microscopic image of giant gas vesicles.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Tutkijat loivat tehokkaan varjoaineen kuorruttamalla kuplia proteiinilla

Bakteerien solunsisäisten kelluntakuplien inspiroimat tutkijat kehittivät samanlaisen tekniikan pienten kaasuvesikkelien kuorruttamiseen sienistä saatavalla proteiinilla. Lopputuloksena syntyvät kuplat ovat turvallisia ja erittäin stabiileja, minkä ansiosta niitä voidaan käyttää esimerkiksi ultraäänitutkimuksen varjoaineena.
Olli Halminen, photo by Jutta Kalli
Mediatiedotteet Julkaistu:

Väitöstutkimus: ”Jarrutustehokkuus” lisäisi ikääntyneiden hyvinvointia ja toisi yhteiskunnalle säästöjä – ja voisi estää sairaaloiden päivystyskaaoksen

Suomalaista sosiaali- ja terveydenhuoltoa johdetaan monin paikoin hajanaisesti pala kerrallaan. Näin kertoo Aalto-yliopiston tuotantotalouden laitokselta väittelevä Olli Halminen, joka tutki ikääntyneiden palveluiden kokonaisuutta Suomessa – ja selvitti, miten niitä voisi johtaa paremmin.
Kuvituskuva, askelia: Aalto-yliopisto / Kristian Presnal
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Hankkija, hajauttaja vai jokin muu? Näin Suomen 309 kuntaa ovat järjestäneet sote-palvelunsa

Tutkimustulokset ja käytännön kokemukset sote-palvelujen yksityistämisen kannattavuudesta ovat ristiriitaisia.
Picture of OtaNano lab equipment.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Kvanttitutkijat löysivät uuden tavan nähdä katsomatta

Aiempaa huomattavasti tehokkaampi koeprotokolla auttaa ymmärtämään kvanttimaailman ja klassisen fysiikan rajapintaa.