Innovative Sustainable Energy Engineering (Nordic Master), Master of Science (Technology)
Examen:
Ansökningsperiod:
Undervisningsspråk:
Längd:
Behörighet:
Utbildningsområde:
Studiepoäng:
Högskola:
Utbildningens beskrivning
Termen hållbar energiteknik innefattar en bred variation av tillvägagångssätt, principer och tekniker (konventionella, hållbara och alternativa) som siktar på att tillhandahålla energi med så låg ekonomisk, miljömässig och social kostnad som möjligt. Fokus läggs på att i hanteringen av energitekniska uppgifter beakta relaterade tekniska, miljömässiga och socioekonomiska problem.
Starkt fokus läggs även på de aspekterna av energisamhället, särskilt i relation till hur existerande och nya effektivitetsförbättrande innovationer kan föras in på marknaden olika länder. Programmets innovativa aspekter härrör sig till både det avancerade konceptet för hållbar energi i Norden och till nya företag inom sektorn.
Studenterna på programmet får kunskaper om projektutformning samt genomförande, drift och underhåll. De får även kunskaper i viktiga faser i utformningen av policy. Avancerad utbildning ur ett forskningsorienterat perspektiv från energisektorn ingår också i studierna.
Undervisningsspråk
Programmets undervisningsspråk är engelska.
Läsårsavgifter och stipendier
Programmet följer varje universitets egen läsårsavgiftspolicy. Huvudsakligen tuderande som inte är medborgare i ett medlemsland i Europeiska unionen (EU) eller Europeiska ekonomiska samarbetsområdet (EES) är skyldiga att betala läsårsavgifter, men kan ansöka stipendier som erbjuds av universitet. Läs mer om avgifter:
Programmet följer varje universitets egen stipendiepolicy. Huvudsakligen tuderande som inte är medborgare i ett medlemsland i Europeiska unionen (EU) eller Europeiska ekonomiska samarbetsområdet (EES) är skyldiga att betala läsårsavgifter, men kan ansöka stipendier som erbjuds av universitet. Läs mer om stipendier:
Studiernas uppbyggnad
I detta dubbelexamensprogram studenter studerar ett år vid två olika nordiska universitet. Deltagande universitet bestäms av det valda studieområdet. Längden på studieperioden vid respektive universitet motsvarar 60 studiepoäng. Den totala omfattningen är 120 studiepoäng.
Inriktningsalternativ
Nordic Master ISEE är unikt i och med att det gör det möjligt för studerande att studera vid två topprankade universitet och tar examen från båda. Programmet har fyra inriktningsalternativ:
- Bioenergy (KTH – Aalto)
- Energy Systems (Aalto – KTH)
- Heat and Power Engineering (Aalto – Chalmers)
- System Integration of Wind Power (KTH – DTU)
Objectives of study tracks
The programme has four specialized study tracks, which are presented in more detail below. At the end of each description you will find a link to the curriculum and course descriptions.
Year 1 at KTH Royal Institute of Technology: Department of Energy Technology.
Year 2 at Aalto University: Department of Mechanical Engineering.
The Bioenergy study track provides state-of-the-art education in thermal conversion of biomass into power and biofuel production. Thermal conversion of biomass is considered to be one of the main methods to reduce carbon dioxide emissions and in replacing fossil carbon sources. This is due to the fact that biomass is a carbon neutral fuel as the emitted CO2 was previously captured from the atmosphere by the plants being thermally processed. Power generation technology from biomass can be achieved through different processes, for example, combustion, gasification, pyrolysis and combined processes, while biofuel production technology can be achieved through pyrolysis, gasification, fermentation and/or distillation process.
Second year studies at Aalto University include two modules, "Power Generation from Biomass" and "Bioenergy in Transport". Power Generation from Biomass module focuses on sustainable production of power from biomass, which includes all aspects related to bio-boilers principles, planning, structure and operation. Bioenergy in Transport module on the other hand focuses on the use and usability as well as combustion of bio-derived fuels in transport, where on-road, off-road and marine transport is covered. Also the basics of bio-fuel production principles are covered. Learning methods include lectures, literature, simulation exercises, excursions, seminars and group project work.
Learning outcomes:
- Student acquires a state-of-the-art education and training in the fields of sustainable power generation from biomass and biofuel; becomes familiar with the principles, planning, structure and operation of bio-boilers, combustion and gasification techniques in different types of boilers; obtains constructive knowledge in biofuel production, use, combustion and relevant environmental aspects.
- Student becomes skilled in calculation, simulation, design and analysis of thermal processes in bioenergy power plant through training in multidisciplinary problem analysis and solving (with emphasis on critical thinking).
- Combining theoretical and practical experience; close collaboration with industry during Master's thesis work and organizing excursions during the courses to provide versatile and hands-on knowledge about biomass technology.
Year 1 at Aalto University: Department of Mechanical Engineering.
Year 2 at KTH Royal Institute of Technology: Department of Energy Technology.
The Energy Systems study track derives from the understanding that affordable access to essential services underpins development, and energy fuels many such services. The "energy system" harnesses a resource and transforms it into energy carriers that are used in appliances and machinery to provide services. Furthemore, in order to provide services to current and future generations, the energy system itself needs to be sustainable, while taking into account that the system may impact and interact with the economy, the environment (including other physical resources or commodity systems) and society. That is why the effects of this impact and interaction should also be sustainably managed. An energy decision-maker is thus concerned with: (i) enabling appropriate, affordable and adequate service access; (ii) ensuring that the energy system can do so in a sustainable manner; and (iii) ensuring that the broader interactions between systems do not compromise the sustained development of the planet.
Learning outcomes:
- Student becomes exposed to the context, role and process of energy systems analysis for medium to long-term decision-making, technology and economic assessments; acquires skills to apply a range of standard energy analysis techniques to stereotypical problems; learns to design, implement and apply energy systems models to a given assessment.
- Student understands: why energy systems (rather than descrete energy technology) are important and how energy systems affect sustainability outcomes; the process of energy-environment-economic (3E) modeling: knowing why modelling is important, as well as who the stakeholders and decision-makers are; introduction to the formulation of accounting, econometric, input-output and optimization modeling; development of energy service and energy demand projections; characterization of resources, technologies, economic, policy, and other elements to be considered within the modeling process; the role of scenarios and assumptions (forecasting, backcasting and so forth) and the importance of transparency; the relationship between modeling and action (policy, investment formulation, technology development); typical model scopes, types and their application; assessment of limitations and dealing with uncertainty.
- Combining theoretical and practical experience; close collaboration with industry during Master's thesis work and organizing excursions during the courses to provide versatile and hands-on knowledge.
Year 1 at Aalto University: Deparement of Mechanical Engineering.
Year 2 at Chalmers University of Technology: Department of Space, Earth and Environment.
The Heat and Power Engineering study track meets the challenges set by global warming and depletion of fossil fuel resources by providing high quality education in advanced technologies and systems for an efficient, clean and competitive conversion, distribution and use of electricity, heating and cooling. Training is offered in the use of optimization and modelling tools for design and planning on the technical plant level (including state-of-the-art technologies) at the same as necessary knowledge on energy systems is given to gain perspective. The enormous transformations needed in the energy system in the future makes the competence and know-how provided by the training indespensible and highly valuable.
Learning outcomes:
- Students become skilled in analysis, optimization and design of combined heat and power plants as well as industrial heat processes, acquiring also knowledge on technologies for fuel conversion with reduced or zero CO2 emissions (biomass and waste conversion, carbon capture and storage technologies).
- Students acquire complementary knowledge on an energy systems level, which trains them to approach problem-solving in an interdisciplinary way.
- Students prepare for a professional career within the energy industry and power generation companies.
- Combining theoretical and practical experience; close collaboration with industry during Master's thesis work and organizing excursions during the courses to provide versatile and hands-on knowledge.
Year 1 at KTH Royal Institute of Technology: Department of Energy Technology.
Year 2 at DTU Technical University of Denmark: Department of Management Engineering.
The System Integration of Wind Power study track trains students to achieve a general and wide-ranging understanding of wind energy as part of the total energy system. Students gain specific knowledge on wind turbines, but also on the various technologies related to wind energy in a system context. Training combines socio-economic aspects of sustainable energy with relevant technical disciplines, such as measurement techniques, design of wind turbines, planning and development of wind farms, grid integration of wind energy systems and relation to smart grid development.
Learning outcomes:
- Students are equipped with skills needed to be able to analyse, design, develop and operate wind energy systems.
- Students prepare for a professional career within the rapidly expanding wind energy sector, including engineering companies and public bodies carrying out planning and development wind power and energy systems.
- Combining theoretical and practical experience; close collaboration with industry during Master's thesis work and organizing excursions during the training to provide versatile and hands-on knowledge.
Internationell verksamhet
Programmet genomförs i starkt internationellt samarbete med Nordic5Techs partneruniversitet och internationell mobilitet är en väsentlig del av studierna.
Möjlighet till fortsatta studier
Programmet ger behörighet för doktorandstudier.
Karriärmöjligheter
Efter examen har studenten två civilingenjörsexamen från olika nordiska universitet, vilket öppnar starka möjligheter för arbetsmarknaden på global nivå. Som ingenjör inom innovativ hållbar energi finns det många sysselsättningsmöjligheter i internationella och inhemska expertpositioner inom energisektorn. Företag inom energiteknik kan erbjuda allt mer jobb, inte bara inom konventionella energitekniker utan också i det växande fältet förnybar energi.
Tyngdpunkter inom forskning
Huvudinriktningarna för Aalto-universitetets energitekniska forskning:
- Energy efficiency har en nyckelroll i att lösa utmaningar som relaterar till att bygga en hållbar framtid för människosamhällen, betonandes behovet av att optimera energisystem av alla storlekar.
- Energy Conversion. Utvecklingen av förbränningsteknik är av central betydelse för att minska utsläppen från energiproduktionen, särskilt i övergången till nya biomassabaserade bränslen. I detta syfte använder vi både empirisk och datorbaserad termodynamik.
Samarbete med andra aktörer
Nordic Five Tech-universiteten hör till de bästa internationella tekniska universiteten och har väldigt hög akademisk standard, som gör det möjligt för studenten att följa sina akademiska intressen. Varje universitet har ett nära samarbete med den lokala energisektorn och energiföretaget.
Välkommen till Nordic Master -webinaren i november!
Nordic Five Tech (N5T) -universiteten erbjuder fem utmärkta dubbelexamensprogram i energi-, miljö-, marin- och arktisk teknik samt polymerteknik. I dessa program avlägger du två masterexamen och studerar i två olika nordiska länder.
I webinaren hör du mer om Nordic Master -programmen och kan fråga om karriärmöjligheter, studerandeerfarenheter samt antagningsprocessen. Kom oc möt professorer, alumner, studeranden och antagningsanställda i webinaren den 14 November 2024 kl 16 (UTC +2)! Webinaren hålls på engelska.
Ansökningsinformation, de bilagor som krävs samt grunderna för bedömningen finner du på programmets engelskspråkiga webbplats.