Tutkijat löysivät kemiallisen reitin grafeenielektroniikan valmistukseen

Aalto-yliopiston, Utrechtin yliopiston ja Delftin teknillisen yliopiston tutkijat onnistuivat koodaamaan sähkövirtapiirin rakenteen atomin tarkkuudella.

Lähtöainemolekyylit muutetaan kemiallisen synteesin avulla tarkasti kontrolloiduiksi nanorakenteiksi. Kuva: Aalto-yliopisto, Utrechtin yliopisto ja Delftin teknillinen yliopisto

Ihmemateriaaliksikin kutsuttu, yhden hiiliatomin paksuinen grafeeni on maailman vahvin tunnettu aine ja paras sähkönjohde huoneenlämmössä. Tutkijat ympäri maailmaa työskentelevätkin ankarasti löytääkseen sille uusia käyttökohteita. Koska grafeenilla itsessään ei ole sähkövirran päälle- ja poiskytkemiseen vaadittavia ominaisuuksia, sen hyödyntäminen elektroniikassa edellyttää uusia ratkaisuja.

”Olemme onnistuneet valmistamaan grafeenirakenteita atomin tarkkuudella. Valitsemalla sopivia lähtöaineita pystyimme koodaamaan sähkövirtapiirin rakenteen äärimmäisen tarkasti”, selittää Aalto-yliopiston professori Peter Liljeroth.

Grafeenin sähköisiä ominaisuuksia voidaan hallita syntetisoimalla siitä erittäin kapeita grafeeni-nanonauhoja. Aikaisemmissa tutkimuksissa on osoitettu, että nauhojen sähköiset ominaisuudet riippuvat siitä, kuinka monen atomin levyinen se on. Viiden atomin levyisenä nauha on poikkeuksellisen hyvin johtava sähkönjohdin, mutta kahden atomin lisääminen tekee siitä puolijohteen.

”Pystyimme saumattomasti liittämään seitsemän atomin levyisen nauhan viiden atomin levyiseen. Näin syntyi puolijohde-metalli-liitos, joka on elektronisten komponenttien peruspalanen”, sanoo Ingmar Swart Utrechtin yliopistosta.

Puolijohde-metalli-liitos yksittäisessä grafeeninanonauhassa.  Nauhan atomirakenne ja sähköinen rakenne voidaan selvittää atomin tarkkuudella mikroskooppitekniikoiden avulla. Kuva: Aalto-yliopisto, Utrechtin yliopisto ja Delftin teknillinen yliopisto

Kemiaa pinnalla

Tutkijat valmistivat grafeenirakenteet kemiallisen reaktion avulla. He höyrystivät lähtöainemolekyylejä kultapinnalle, jossa ne reagoivat kontrolloidusti ja muodostivat uusia kemiallisia yhdisteitä.

”Tämä on erilainen metodi kuin se, mitä tällä hetkellä hyödynnetään sähköisten komponenttien, kuten tietokoneen sirujen, valmistuksessa. Grafeenin kanssa on olennaista, että rakenne pystytään valmistamaan atomin tarkkuudella, joten on luultavaa, että kemiallinen reitti on ainoa tehokas tapa”, Ingmar Swart korostaa.

Tutkijat hyödynsivät atomiresoluutioon pystyviä mikroskopioita selvittääkseen valmistamiensa rakenteiden sähköiset ominaisuudet.

”Tämä on ensimmäinen kerta, kun pystyimme luomaan esimerkiksi tunneliliitoksen, jossa jokaisen atomin paikka on tarkkaan määritelty. Samaan aikaan tehtyjen sähkövirran mittausten ansiosta voimme myös verrata teoriaa ja käytäntöä hyvin kvantitatiivisella tasolla”, Liljeroth selittää.

Tutkimusta rahoittivat Suomen Akatemia, Euroopan tutkimusneuvosto ERC ja NWO Graduate Programme.

Artikkeli: P.H. Jacobse, A. Kimouche, T. Gebraad, M.M. Ervasti, J.M. Thijssen, P. Liljeroth and I. Swart, Electronic components embedded in a single graphene nanoribbon, Nature Communications.

Linkki artikkeliin (nature.com)

Lisätietoja:

Professori Peter Liljeroth
p. 050 363 6115
[email protected]
http://physics.aalto.fi/groups/stm/

 

 

 

 

 

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lisää tästä aiheesta

4G:n nopeus riittää useimmille käyttäjille
Tiedotteet Julkaistu:

Tutkimus: 4G:n nopeus ei ole sovellusten käyttäjälle ykkösasia

Käyttäjäkokemukseen vaikuttavat verkon nopeutta enemmän omat odotukset sekä puhelimen ja sovellusten toimivuus.
Aalto-yliopistokiinteistöt ACRE toimitusjohtaja managing director Ville Jokela Kuva: Kalle Kataila
Nimitykset, Kampus, Tiedotteet, Yliopisto Julkaistu:

Ville Jokela nimitetty Aalto-yliopistokiinteistöjen toimitusjohtajaksi

Jokela vastaa yhtiön päivittäisestä johtamisesta 1.1.2020 alkaen.
Uusien magneettikenttäantureiden etäisyys aivojen pinnasta on vain noin puolet siitä, mitä se on nykyisissä magnetoenkefalografia- eli MEG-laitteissa. Kuva: Lauri Parkkosen tutkimusryhmä ja Mika Seppä.
Tiedotteet Julkaistu:

Uusi aivokuvantamislaite mukautuu pään kokoon – signaalit voidaan mitata lähes yhtä tarkasti kallon päältä kuin sen sisäpuolelta

Pään kokoon mukautuvat, hermosolujen tuottamia magneettikenttiä mittaavat anturit mahdollistavat entistä tarkemman aivotoiminnan mittaamisen.
DigiEduHack main event at Aalto University
Tiedotteet Julkaistu:

130 innovatiivista ideaa muovaa koulutuksen tulevaisuutta

24 tuntia, 21 maata, 60 haastetta: DigiEduHackissa yli 1700 osallistujaa ratkoi koulutukseen liittyviä haasteita yhtä aikaa Euroopassa, Afrikassa, Aasiassa sekä Etelä- ja Pohjois-Amerikassa.