Uutiset

Tietokoneet oppivat ymmärtämään ihmisiä yhä paremmin mallintamalla heitä

Tietokoneet oppivat selittämään yksilöiden käyttäytymistä seuraamalla katseita ja liikkeitä.

Aalto-yliopiston, Birminghamin yliopiston ja Oslon yliopiston tutkijat osoittavat tuoreessa tutkimuksessaan, että tietokone voi oppia ymmärtämään käyttäjää tarkkailemalla hänen toimintansa ominaispiirteitä, kun sen käytössä on karkea kognitiivinen malli käyttäjästä. Havaintojen avulla tietokone hienosäätää karkean mallin vastaamaan tarkemmin kyseistä käyttäjää. Tutkimuksessa pääteltiin käyttäjän näköjärjestelmän ominaispiirteitä, kuten katseen kiinnittämisen kestoa käyttäen hyväksi tietoa siitä, kuinka kauan erilaisten valikkokohteiden napsauttaminen vie aikaa käyttäjältä.

Koneoppimiseen liittyvistä läpimurroista huolimatta tietokoneet eivät ymmärrä kovin hyvin, miksi ihminen käyttäytyy tietyllä tavalla. Yksilön kykyjä ja tavoitteita kuvailevilla kognitiivisilla malleilla voidaan sekä selittää että ennustaa paremmin yksilön käyttäytymistä, mitä ei aiemmin ole käytetty koneoppimismenetelmien kehitystyössä.

”Lähestymistapamme etuna on se, että tietoa tarvitaan paljon vähemmän kuin perinteisissä black box -menetelmissä. Aikaisemmat menetelmät tämän tyyppisen hienosäädön tekemiseen ovat vaatineet joko suuren määrän manuaalista työtä tai hyvin paljon erittäin tarkkaa havainnointitietoa, mikä on rajoittanut näiden mallien käytettävyyttä tähän asti”, Aalto-yliopiston tohtorikoulutettava Antti Kangasrääsiö kertoo.

Työssä käytetty menetelmä perustuu Bayesilaiseen laskentaan (Approximate Bayesian Computation, ABC). Tämä koneoppimismenetelmä on kehitetty päättelemään hyvin monimutkaisia malleja havaintojen perusteella, ja sitä käytetään muun muassa ilmastotieteessä ja epidemiologiassa. Tutkijat hyödynsivät menetelmän lisäksi kognitiivista havaintodataa, mikä mahdollistaa ihmisen käyttäytymiseen liittyvien monimutkaisten mallien automaattisen päättelyn ihmisen käyttäytymisliikkeiden perusteella. Tämä voisi olla hyödyllistä ihmisen ja robotin välisessä vuorovaikutuksessa tai yksilöllisten kykyjen automaattisessa arvioinnissa, esimerkiksi kognitiivisen rappeutumisen oireiden havaitsemisessa.

”Jatkossa tietokone voisi käyttää opittua mallia simuloidakseen sitä, kuinka kyseinen henkilö tulisi todennäköisesti toimimaan täysin uusissa olosuhteissa”, sanoo Aalto-yliopiston koneoppimisen professori Samuel Kaski.

”Olemme innoissamme tämän työn tulevaisuuden näkymistä älykkäiden käyttöliittymien alalla”, sanoo Aalto-yliopiston käyttöliittymien professori Antti Oulasvirta.

”Tulevaisuudessa tietokone pystyy ymmärtämään ihmisiä jotakuinkin samalla tavalla kuin ihmiset ymmärtävät toisiaan. Silloin se voi ennustaa paremmin mahdollisesta muutoksesta seuraavien etujen lisäksi myös yksilölle aiheutuvat yksittäiset kustannukset. Tämä kyky on puuttunut mukautuvilta käyttöliittymiltä”, hän jatkaa.

Tulokset esitellään maailman suurimmassa ihmisten ja tietokoneen vuorovaikutukseen keskittyvässä CHI-konferenssissa Denverissä, Yhdysvalloissa toukokuussa 2017. Artikkeli on luettavissa osoitteessa https://arxiv.org/abs/1612.00653

Kuva osoittaa, miten ABC:llä viritetyt parametrit johtavat tarkempiin ennusteisiin käyttäjän käyttäytymisestä.

Lisätietoa:
Tohtorikoulutettava Antti Kangasrääsiö
Aalto-yliopisto
[email protected]
Puh 050 5171 301

Professori Antti Oulasvirta
Aalto-yliopisto
Puh 050 384 1561
[email protected]  

Professori Samuel Kaski
Aalto-yliopisto
[email protected] 
Puh 050 3058 694

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Suvi Hirvonen-Ere
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Väitöstutkimus selvitti, miksi kestävän liiketoiminnan läpilyönti yritysmaailmassa on ollut hidasta, miten sitä voisi kiihdyttää – ja samalla tehdä tuottoisaa tulosta

Kaupallinen ja sopimusjohtaminen on yritysjohdon strateginen työväline, jota käyttäen yritys voi saavuttaa sekä ympäristöllisesti kestävät että taloudelliset tulostavoitteensa, ilmenee tällä viikolla tarkastettavasta väitöskirjasta.
Viima-rakennuksen pääsisäänkäynti
Tutkimus ja taide Julkaistu:

Tulevaisuuden rakennukset ovat sekä energian tuottajia että käyttäjiä

Aalto-yliopistossa kehitetty uusi innovatiivinen rakenne parantaa levylämmönvaihtimen tehokkuutta jopa 20 prosenttia. Lämpöpumppuun kytkettynä sillä on lukuisia käyttökohteita aina kotien käyttöveden lämmityksestä maalämpölaitoksiin ja rakennusten ilmanvaihtoon.
Construction worker looking straight to camera
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Jopa 80 prosenttia rakennustyömailla tehtävästä työstä on tehotonta – jatkuvat keskeytykset vaikuttavat myös turvallisuuteen

Valtaosa rakennustyömailla tehtävistä töistä ei suoraan vaikuta työn varsinaiseen edistymiseen. Tuore väitöstutkimus löysi kuitenkin helpon keinon parantaa rakentamisen tuottavuutta ja samalla myös hyvinvointia: työntekijöiden toiminnan seuranta.
Ylös vievät betoniset portaat, vasemmalla puolelle seinällä taideteos
Kampus, Tutkimus ja taide, Yliopisto Julkaistu: