Uutiset

Tekoäly tuo tehokkuutta kuvien ja äänen käsittelyyn

Syvät neuroverkot mahdollistavat kuvakerrosten avaamisen ja äänisignaalien erottamisen toisistaan.
Robotti osaa avata kuvakerrokset.

Tekoälytutkijat ovat löytäneet uuden tavan tehdä havainnollista päättelyä. Siinä robotti oppii ryhmittelemään havaintonsa mielekkäiksi kokonaisuuksiksi ohjaamattomasti ilman,  että sille erikseen opetetaan ryhmittelykriteerejä.

”Kun robotille näytetään kuvia, se oppii erottelemaan paitsi kuvien riippumattomat osat erilleen myös yhdistämään yhteenkuuluvat palat kokonaisuuksiksi sekä tarvittaessa täydentämään kuvan puuttuvat osat. Esimerkiksi kotitalousrobotti oppii navigoimaan huonekalujen ja muiden esteiden keskellä ja erottamaan, mitkä esineet sijaitsevat toistensa takana. Kotitalousrobotin tehtävänä voi olla vaikkapa tarttua mattoon, jonka päät näkyvät sohvan eri puolilla. Tehtävän suorittamiseksi robotin on opittava, että kaksi maton palasta muodostavat kokonaisuuden ja tällöin riittää, kun tarttuu mattoon toiselta puolelta sohvaa”, selittää väitöskirjatutkija Antti Rasmus.

Havaintojen ohjaamatonta ryhmittelyä ei ole toistaiseksi juurikaan tutkittu, mutta sitä voidaan hyödyntää esimerkiksi kuvankäsittelyssä eri kuvakerrosten avaamiseen sekä kerrosten valikoimiseen lopulliseen kuvaan. Tämän ominaisuuden avulla esimerkiksi häiritsevät esineet on helposti poistettavissa kuvasta.

”Ominaisuutta voidaan hyödyntää myös meluisissa tilaisuuksissa, joissa halutaan keskittyä vain yhteen ääneen. Tällöin robotti mahdollistaa äänisignaalien erottamisen toisistaan”, toteaa Rasmus.

Aiemmin paljon dataa vaatineet syvät neuroverkot oppivat uuden havainnollisen päättelyn myötä paljon tehokkaammin. Jokainen kuva tuottaa enemmän informaatiota robotin opetustehtävään, jolloin yksittäisen kuvan tehokkuus paranee, eikä niitä tarvita yhtä paljon kuin aiemmin.                                                                                                                                                

”Myös liike on robotille vahva vihje yhteenkuuluvista asioista, koska toisiinsa liittyvät osat liikkuvat aina samaan suuntaan. Esimerkiksi robotin on helpompi huomata aidan takana seisova koira, kun se lähtee liikkeelle”, lisää Rasmus.

Tutkimusta on ollut tekemässä Antti Rasmus, Mathias Berglund ja Tele Hotloo Hao tietotekniikan laitokselta ja The Curious AI:sta; Klaus Greff ja Jürgen Schmidhuber sveitsiläisestä tekoälyyn keskittyvästä tutkimuslaboratoriosta, IDSIA:sta; sekä The Curious AI:n toimitusjohtaja Harri Valpola. Tutkimus on osa Rasmuksen ja Berglundin väitöskirjatyötä.

Lisätietoa:

Antti Rasmus
Tohtoriopiskelija
Aalto-yliopisto, tietotekniikan laitos
[email protected]

Artikkeli: Tagger: Deep Unsupervised Perceptual Grouping

Video

  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

Kaksi mieshenkilöä juhlapuvuissa kiltalippujen edessä
Palkinnot ja tunnustukset, Yliopisto Julkaistu:

68 tohtoria ja viisi kunniatohtoria – katso kuvat tekniikan alan tohtoripromootiosta

Vuoden 2024 tekniikan alan juhlallinen tohtoripromootio järjestettiin pe 14.6. Dipolissa.
Harald Herlin Learning Center
Tutkimus ja taide Julkaistu:

Oppimiskeskuksessa pilotoidaan 19.8.2024 alkaen uusia aukioloaikoja

Opiskelijoiden ja henkilöstön mahdollisuudet käyttää tiloja ja kokoelmia laajentuvat.
Fajr Asghar vasemmalla ja Vilma Svynarenko oikealla
Yliopisto Julkaistu:

TET-harjoittelijat Fajr Asghar ja Vilma Svynarenko tutustuivat Aallossa kaikkeen aurinkokennoista Täffän spagettiin

Fajr Asghar ja Vilma Svynarenko laskivat ensin aurinkokennojen hyötysuhdetta ja kirjoittivat sitten artikkelin uusiutuvasta energiasta.
Joukko ihmisiä kävelee Lehmuskujaa pitkin kesällä
Tutkimus ja taide, Yliopisto Julkaistu:

Vahva kokonaistulos: Suomen Akatemialta 27,5 miljoonaa euroa tutkimukseen

Akatemiatutkija- ja akatemiahankerahoituksen sai yhteensä 52 aaltolaista. Aalto-yliopistolle myönnetty rahoitus on kokonaisuudessaan 27,5 miljoonaa euroa.