Uutiset

Tekoäly ennustaa luotettavasti, miten eri lääkeyhdistelmät tappavat syöpäsoluja

Suomessa kehitetyn koneoppimismenetelmän avulla syöpäsairauksia voitaisiin hoitaa nykyistä tehokkaammin.
Some medicine capsules and equations
Uutta koneoppimismenetelmää koulutettiin suurella datajoukolla, joka saatiin aiemmista lääkeaineiden ja syöpäsolujen välistä yhteyttä selvittäneistä tutkimuksista. Kuvitus: Matti Ahlgren / Aalto-yliopisto

Eri lääkkeiden yhdistäminen on usein tehokkain ja turvallisin tapa hoitaa syöpäpotilaita. Nyt Aalto-yliopiston, Helsingin yliopiston ja Turun yliopiston tutkijat ovat kehittäneet  koneoppimismenetelmän, joka ennustaa tarkasti, miten erilaisten lääkkeiden yhdistelmät tappavat syöpäsoluja.

Pitkälle edenneen syövän hoidossa erilaisten hoitomenetelmien yhdistäminen on yleensä välttämätöntä. Syöpäleikkauksen lisäksi potilasta hoidetaan usein sädehoidolla, lääkehoidolla tai molemmilla.  Eri lääkkeitä myös yhdistetään niin, että yhdistelmässä olisi mukana eri soluihin eri tavoin vaikuttavia lääkeaineita.

Yhdistäminen paitsi parantaa hoidon tehoa myös vähentää usein sen haittoja, jos yksittäisten lääkkeiden annostusta pystytään pienentämään. Toimivien lääkeaineyhdistelmien seulominen kokeellisesti on kuitenkin hidasta ja kallista. Siksi yhdistelmähoidon edut jäävät usein saavuttamatta.

Uutta koneoppimismenetelmää koulutettiin suurella datajoukolla, joka saatiin aiemmista lääkeaineiden ja syöpäsolujen välistä yhteyttä selvittäneistä tutkimuksista. Arvostetussa Nature Communications -tiedelehdessä julkaistut tutkimustulokset kertovat, että malli löysi lääkkeiden ja syöpäsolujen väliltä sellaisia yhteyksiä, joita ei havaittu yksinkertaisemmilla malleilla. 

”Koneen oppima malli on itse asiassa koulumatematiikasta tuttu polynomifunktio, mutta erittäin monimutkainen sellainen. Malli antaa erittäin tarkkoja tuloksia. Esimerkiksi niin kutsutun korrelaatiokertoimen arvot olivat kokeissamme yli 0,9. Se viittaa erinomaiseen luotettavuuteen”, Aalto-yliopiston professori Juho Rousu kertoo.

Kokeellisissa mittauksissa korrelaatiokerrointa 0,8-0,9 pidetään luotettavana. Usein se jää kuitenkin niissä sen alle.

Hyötyä myös muiden sairauksien hoidossa

Menetelmä ennustaa tarkasti, miten tietty lääkeaineyhdistelmä tuhoaa syöpäsoluja, vaikka juuri sen yhdistelmän vaikutusta kyseiseen syöpätyyppiin ei olisi aiemmissa laboratorio tutkimuksissa testattu. 

”Tämä auttaa syöpätutkijoita valitsemaan, mitä lääkeaineyhdistelmiä kannattaa valita tuhansien vaihtoehtojen joukosta jatkotutkimuksiin”, sanoo tutkija Tero Aittokallio Suomen molekyylilääketieteen instituutista FIMMistä, joka on osa Helsingin yliopistoa.

Samaa menetelmää voitaisiin hyödyntää myös muiden kuin syöpäsairauksien kohdalla. Tällöin malli täytyisi opettaa uudelleen datalla, joka liittyy kyseiseen sairauteen. Menetelmällä voitaisiin tutkia esimerkiksi sitä, miten eri antibioottiyhdistelmät vaikuttavat bakteeritulehduksiin tai miten tehokkaasti eri lääkeaineyhdistelmät tappavat soluja, joihin SARS-Cov-2-koronavirus on hyökännyt.

Julkaisu:

Heli Julkunen, Anna Cichonska, Prson Gautam, Sandor Szedmak, Jane Douat, Tapio Pahikkala, Tero Aittokallio, and Juho Rousu. Leveraging multiway interactions for systematic prediction of pre-clinical drug combination effects. Nature Communications. DOI: 10.1038/s41467-020-19950-z

Lisätietoja:

Heli Julkunen
Projektitutkija, Aalto-yliopisto
[email protected]

Juho Rousu
Professori, Aalto-yliopisto
Suomen tekoälykeskus FCAI
puh. 050 415 1702
[email protected]

Tero Aittokallio
Ryhmänjohtaja, Suomen molekyylilääketieteen instituutti FIMM
Helsingin yliopisto
[email protected]

Linkki tutkimusartikkeliin: https://www.nature.com/articles/s41467-020-19950-z

Lue lisää

FCAI Finnish Center for Artificial Intelligence

Finnish Center for Artificial Intelligence FCAI

FCAI (Suomen tekoälykeskus) on Suomen Akatemian lippulaivayksikkö jonka perustajina ovat Aalto-yliopisto, Helsingin yliopisto ja VTT.

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Kerrostalo ja kallioita
Yhteistyö, Mediatiedotteet, Tutkimus ja taide Julkaistu:

LÄHIÖPRIDE-hankkeessa tutkitaan lähiömielikuvien ja rakennetun ympäristön suhdetta

Monitieteinen hanke yhdistää arkkitehtuurin historian, sosiologian, kriittisen kulttuuriperinnön ja maisema-arkkitehtuurin tutkimuksen. Tutkimukseen ja työpajoihin pohjaava hanke tähtää lähiöiden kestävään tulevaisuuteen.
Helsingin kauppakorkeakoulun edesmennyt emerituskansleri Fedi Vaivio
Tutkimus ja taide Julkaistu:

Kansleri Fedi Vaivio in memoriam

Helsingin kauppakorkeakoulun emerituskansleri Fedi Vaivio kuoli Helsingissä 27.2.2021.
Aalto-yliopiston kauppakorkeakoulu. Kuva: Mika Huisman
Tutkimus ja taide Julkaistu:

Erittäin laadukkaiden kansainvälisten hakemusten määrä Kauppakorkeakoulun professuureihin on kasvussa

Erinomaiset ranking-sijoituksemme kertovat tutkimustyömme korkeasta laadusta.
Henrika Yliriskun väitös taidekasvatuksen alalta tarkastettiin Aalto-yliopistossa maaliskuussa 2021.
Tutkimus ja taide, Opinnot Julkaistu:

”Ympäristötaidekasvatuksessa pitäisi pureutua ihmiskeskeisyyden ongelmallisuuteen”

Minä väitän -sarjassamme Henrika Ylirisku tutkii ympäristötaidekasvatuksen lähtökohtia.