Uutiset

Milica Todorović kehittää uusia materiaaleja tekoälyn avulla

Tutkijatohtori Milica Todorović tuo työssään yhteen tekoälyn ja materiaalitutkimuksen yhdistämällä toisiinsa insinööritieteiden, fysiikan ja tietotekniikan osaamisen, datan sekä intuition.
Milica Todorović

Suomen tekoälykeskuksen (Finnish Center for Artificial Intelligence, FCAI) ja Aalto-yliopiston teknillisen fysiikan laitoksen tutkijatohtori Milica Todorović on kiinnostunut kehittämään materiaaleja ja laitteita, jotka voivat auttaa ilmastonmuutoksen ja kestävän kehityksen kaltaisten monimutkaisten ja monialaisten maailmanlaajuisten haasteiden ratkaisemisessa. Todorović tuo työssään yhteen tekoälyn ja materiaalitutkimuksen yhdistämällä insinööritieteiden, fysiikan ja tietotekniikan osaamisen, datan ja intuition toisiinsa.

”Tutkimme materiaalin rakenteen ja toiminnallisuuden välistä yhteyttä, ja tekoäly auttaa tämän yhteyden ymmärtämisessä. Kokeellista tutkimusta voidaan täydentää eri tavoin tietokonesimulaatioiden avulla. Voimme esimerkiksi nopeuttaa kokeita seulomalla potentiaalisia materiaaleja ja suodattamalla pois ne materiaalit, jotka eivät toimi. Simulaatioiden avulla voimme myös kerätä tietoa kokeellisen tutkimuksen taustalla olevista mikroskooppisista rakenteista ja prosesseista”, kertoo Todorović.

Yksi esimerkki tekoälyn hyödyntämisestä on molekyylien optisten spektrien simulointi ja laskenta kvanttimekaniikan avulla. Optiset spektrit ovat tärkeitä varsinkin teknologioissa, joissa materiaalit vuorovaikuttavat valon kanssa, kuten vähäenergisissä LED-valoissa tai aurinkopaneeleissa.

Simulointiin ja laskentaan tarvitaan erittäin tehokkaita supertietokoneita ja paljon laskenta-aikaa. Tätä voidaan kuitenkin nopeuttaa kouluttamalla tekoälyä useilla rakenteilla ja niiden ennalta lasketuilla spektreillä. Tekoälyn kouluttamista varten tarvitaan erittäin tehokas tietokone, mutta kun tekoälymalli on valmis ja toiminnassa, se osaa arvioida hyvin minkä tahansa sille annetun uuden molekyylirakenteen spektrin vain millisekunneissa.

Tekoäly voi myös auttaa ratkaisemaan monia materiaalitieteen tutkijoiden monimutkaisia optimointiongelmia. Uusien materiaalien kehittäminen tiettyjä käyttötarkoituksia varten edellyttää useiden toisiinsa liittyvien muuttujien hienosäätöä.

”Esimerkiksi aurinkopaneelissa on optimoitava siihen parhaiten soveltuvat materiaalit sekä kerrosten paksuudet ja asettelu. Lopullinen optimointialue voi olla erittäin suuri, mutta tekoäly voi laskea sen hyvin tehokkaasti ja nopeasti”, Todorović kertoo.

Data on tutkimuksen avain, ja suurten datavarastojen yhdistäminen tekoälyasiantuntemukseen on merkittävä etu.

”Materiaalitiede hyötyi valtavasti siitä, että musiikin ja videoiden suoratoiston yleistyminen 15–20 vuotta sitten teki yhtäkkiä valtavien tietomäärien siirtämisestä ja tallentamisesta suhteellisen edullista. Ennen tätä tutkijat rakensivat valtavia datavarastoja ja pitivät ne erillään toisistaan, mutta nyt ne voitiin yhdistää.”

Milica Todorovićin ura alkoi Lontoon UCL-yliopistossa, jossa hän teki maisterintutkintonsa lopputyön materiaalien simuloinnista. Se johti tohtorintutkintoon Oxfordissa, minkä jälkeen Todorović muutti Japaniin tutkijatohtoriksi tutkimaan materiaalien simuloinnissa käytettäviä supertietokoneita.

”Tekoäly tuli mukaan kuvioihin, kun siirryin Aalto-yliopistoon. Aallon tietotekniikan laitoksen tutkijoilla oli tapana keskustella oman alansa ulkopuolisten ihmisten kanssa yhteistyöhankkeiden kehittämisestä jo ennen Suomen tekoälykeskuksen perustamista, mikä on melko harvinaista. Materiaalitieteessä on paljon dataa, jonka käsittelemistä varten tarvitaan koneoppimista. Materiaalitieteen tutkijoilla ei kuitenkaan ollut juurikaan koneoppimiseen liittyvää osaamista. Aalto-yliopistossa olemme tehneet yhteistyötä varsinkin Suomen tekoälykeskuksen perustamisen jälkeen ja yhdistäneet osaamisemme tutkimuksessa ja myös opetuksessa.”

Milica Todorović opettaa maisteritason kurssia Koneoppiminen materiaalitieteessä (Machine Learning for Materials Science). Sen osallistujamäärät ovat kasvaneet nopeasti kurssin perustamisen jälkeen - kurssi on ollut Aalto-yliopiston ja Helsingin yliopiston luonnontieteiden ja insinööritieteiden opiskelijoiden suosiossa.

Lisätietoa:

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

AI-generated colourful images of robot-looking figures and humans programming.
Tutkimus ja taide Julkaistu:

Ohjelmoinnin sietämätön keveys – tekoälyavusteinen koodaus pakottaa miettimään tietotekniikan opetuksen uudelleen

Aalto-yliopiston tietoteknisen opetuksen tutkijat osoittivat tutkimuksessaan, että tekoälyavusteinen ohjelmointi voi olla hyödyllinen työkalu opettajille.
An illustrated book with model wearing summery outfit lays on colourful textiles surface
Tutkimus ja taide, Opinnot Julkaistu:

DIALOGUES-näyttely tekstiilien tulevaisuudesta Dipolin galleriassa

Näyttelyssä on esillä Aalto yliopiston tekstiiliin liittyviä tutkimusprojekteja ja opiskelijatöitä.
A person wearing a shirt that says "build like an entrepreneur" sitting in class, in front of a drawing
Tutkimus ja taide Julkaistu:

Tutki taiteen ja yrittäjyyden yhtymäkohtia Aallon opiskeljoiden näyttelyssä

Art, Life and Entrepreneurship -kurssin lopputyöt ovat näytillä Väreen aulassa 29.11.–13.12.
Andrea Sand
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Piille löytyy elektroniikassa lupaavia haastajia, mutta niiden säteilynkestävyys on arvoitus – tutkimusprojekti kehittää tehokasta tapaa säteilyvaurioiden ennustamiseen

Aalto-yliopiston apulaisprofessori Andrea Sand sai Euroopan tutkimusneuvostolta merkittävän rahoituksen puolijohteiden säteilyvaurioiden ennustamiseen. Uusi menetelmä voi avata ovia seuraavan sukupolven materiaalien käyttöönotolle.