Miten mustasta aukosta voidaan ottaa kuva, kun mustat aukot eivät säteile valoa?
Nimensä mukaisesti musta aukko itsessään ei säteile. Mustan aukon ympäristö kuitenkin voi säteillä voimakkaasti, mikäli aukkoon putoaa kaasua. Kaasun kiertäessä aukkoa vinhalla nopeudella se kuumenee voimakkaasti ja säteilee. Mustan aukon painovoimakenttä taivuttaa tämän valon kulkua saaden osan fotoneista kiertämään aukon ympäri. Lopputuloksena on kirkas rengas, jonka keskellä näkyy tumma varjo – tapahtumahorisontin siluetti. Varjo on noin kaksi ja puoli kertaa itse tapahtumahorisonttia suurempi ja sen koko riippuu pääasiassa mustan aukon massasta sekä pienemmässä määrin siitä, kuinka nopeasti aukko pyörii.
Mikä on tapahtumahorisontti?
Tapahtumahorisontti on se mustan aukon raja, jonka sisäpuolelta musta aukko imee itseensä kaiken, myös valon, eli puhutaan mustan aukon tapahtumahorisontista.
Miksi mustia aukkoja kannattaa tutkia?
Mustan aukon äärimmäinen painovoimakenttä antaa mahdollisuuden testata Einsteinin yleistä suhteellisuusteoriaa – yhtä nykyfysiikan kulmakivistä – olosuhteissa, joita maanpäällisistä laboratorioista tai edes omasta aurinkokunnastamme ei löydy.
Yleinen suhteellisuusteoria kuvaa painovoiman aika-avaruuden kaareutumisena ja viimeisen sadan vuoden ajan se on selvinnyt kirkkaasti kaikista kokeellisista testeistä. Tavalliselle ihmiselle yleinen suhteellisuusteoria näkyy helpoiten kännyköistäkin tutusssa GPS-paikannuksessa: mikäli suhteellisuusteoriaa ei otettaisi huomioon GPS-satelliittien kelloissa, järjestelmän paikannusvirhe kasvaisi jo yhdessä vuorokaudessa merkittävästi.
Ei ole kuitenkaan selvää, että suhteellisuusteoria pätee myös hyvin voimakkaissa painovoimakentissä kuten mustan aukon lähellä. Mahdollinen poikkeama suhteellisuusteorian ennusteista voisi johdattaa fyysikot vielä syvemmin maailmankaikkeutta kuvaavan teorian jäljille.
Yleisen suhteellisuusteorian testien lisäksi Event Horizon Telescope antaa mahdollisuuden tutkia mustaan aukkoon putoavan kaasun käyttäytymistä aivan tapahtumahorisontin lähellä. Tämän odotetaan antavan vastauksia sellaisiin kysymyksiin kuten, miten supermassiivisten mustien aukkojen synnyttämät valtavat plasmasuihkut saavat alkunsa.
Miten niin kaukaisesta kohteesta on voitu saada kuva?
Nyt saadun kuvan on mahdollistanut tekniikan, laitteiden ja analysointimenetelmien kehittyminen. Kuvan saamiseen on käytetty pitkäkantainterferometriaa (Very Long Baseline Interferometry VLBI). Se on tekniikka, jolla useat eri puolilla maapalloa sijaitsevat radioteleskoopit yhdistetään mahdollisimman tarkan kuvan saamiseksi kaukaisesta kohteesta. Yhdessä nämä teleskoopit ovat erotuskyvyltään kuin yksi maapallon kokoinen teleskooppi. Tämä virtuaalinen teleskooppi on lähes maapallon kokoinen ja niin tarkka, että sen erotuskyvyllä voisi esimerkiksi lukea Kanarialla olevaa sanomalehteä Helsingistä käsin.
Miten musta aukko kuvattiin? Miksi kuvia ei aiemmin ole saatu otettua?
Nimensä mukaisesti musta aukko itsessään ei säteile. Mustan aukon ympäristö kuitenkin voi säteillä voimakkaasti, mikäli aukkoon putoaa kaasua. Kaasun kiertäessä aukkoa vinhalla nopeudella se kuumenee voimakkaasti ja säteilee. Mustan aukon painovoimakenttä taivuttaa tämän valon kulkua saaden osan fotoneista kiertämään aukon ympäri. Lopputuloksena on kirkas rengas, jonka keskellä näkyy tumma varjo – tapahtumahorisontin siluetti. Varjo on noin kaksi ja puoli kertaa itse tapahtumahorisonttia suurempi ja sen koko riippuu pääasiassa mustan aukon massasta sekä pienemmässä määrin siitä, kuinka nopeasti aukko pyörii.
Ongelma mustan aukon varjon kuvaamisessa on sen pienuus. Suurimmatkin mustat aukot mahtuisivat aurinkokuntamme sisälle ja kun etäisyydet niihin ovat valtavia, varjon erottamiseksi tarvitaan pari tuhatta kertaa Hubble-avaruusteleskooppia tarkempi havaintolaite. Nyt saadun kuvan on mahdollistanut tekniikan, laitteiden ja analysointimenetelmien kehittyminen.
Vuonna 2017 yhteensä kahdeksan radioteleskooppia vuortenhuipuilla Chilessä, Meksikossa, Havaijilla, Arizonassa, Espanjassa sekä Etelämantereella kuvasivat viiden päivän ajan M87:n ja Sagittarius A*:n mustia aukkoja. Pitkäkantainterferometriaksi (Very Long Baseline Interferometry, lyhyesti VLBI) kutsutulla tekniikalla nämä teleskoopit yhdistettiin yhdeksi jättimäiseksi, virtuaaliseksi teleskoopiksi. Se on lähes maapallon kokoinen ja niin tarkka, että sen erotuskyvyllä voisi esimerkiksi lukea Kanarialla olevaa sanomalehteä Helsingistä käsin.
Event Horizon Telescopen kuva on vaatinut näiden kahdeksan radioteleskoopin erittäin tarkkaa tahdistamista, minkä vuoksi jokaiselle teleskoopille on asennettu huipputarkat atomikellot. Teleskooppien signaalit on tallennettu tuhannelle erikoisvalmisteiselle kovalevylle, jotka on havaintojen jälkeen kuljetettu kahdelle supertietokoneelle signaalien yhdistämistä varten. Tämän jälkeen yhdistetyistä signaaleista on vielä pitänyt laskea kuva. Tämäkään ei ollut helppoa, sillä Event Horizon Telescopen kaltainen interferometri ei muodosta kuvaa samalla tavalla suoraan kuten esimerkiksi kamera. Koska radioteleskooppeja verkostossa on vain muutama, on sillä havaitseminen kuin yrittäisi ottaa kuvaa teleskoopilla, jonka peili on ehjä vain muutamasta pienestä paikasta. Niinpä kuvan muodostamiseen tarvitaan kehittyneitä algoritmeja ja tutkijoiden on täytynyt olla äärimmäisen huolellisia varmistuakseen kuvan oikeellisuudesta.
Alla oleva animoitu video kertoo lisää siitä, miten mustia aukkoja tutkitaan (videoon on saatavissa suomenkieliset tekstitykset).