Uutiset

Maxwellin demonista tehtiin itsenäinen jäähdytin nanoteknologialla

Aalto-yliopiston tutkijat valmistivat laitteen, joka voi auttaa esimerkiksi tulevaisuuden tietokoneiden suunnittelussa.

Autonominen Maxwellin demoni. Kun demoni havaitsee elektronin tulevan saarekkeelle (1.), se vangitsee elektronin positiivisella varauksella (2.). Kun demoni huomaa elektronin poistuvan saarelta (3.), se palauttaa negatiivisen varauksen (4.). Kuva Jonne Koski.

Vuonna 1867 skotlantilainen fyysikko James Clerk Maxwell haastoi termodynamiikan toisen pääsäännön, jonka mukaan entropian, eli epäjärjestyksen on kasvettava suljetussa systeemissä. Ajatuskokeessaan Maxwell otti umpinaisen kaasusäiliön, jakoi sen kahtia väliseinällä ja sijoitti seinään pienen luukun, jota vartioiva olento, ”demoni”, pystyi luukkua avaamalla ja sulkemalla erottelemaan hitaat kylmät ja nopeat lämpimät hiukkaset omille puolilleen ja luomaan näin lämpötilaeron, vastoin termodynamiikan oppeja.

Ajatuskoetta on teoriatasolla pohdittu melkein puolitoista vuosisataa, mutta kokeellisesti sen testaaminen on ollut viime vuosiin saakka mahdotonta. Nyt Aalto-yliopiston tutkijat ovat onnistuneet rakentamaan nanoteknologiaa hyödyntäen autonomisen Maxwellin demonin, joka mahdollistaa termodynamiikan mikroskooppisen analysoinnin. Tutkimuksen tulokset julkaistiin juuri Physical Review Letters -tiedejulkaisussa, ja ne ovat osa tohtorikoulutettava Jonne Kosken väitöskirjaa.

– Rakentamamme järjestelmä on yhden elektronin transistori, joka muodostuu pienestä metallisaarekkeesta, joka on yhdistetty kahteen johtimeen suprajohtavista materiaalista tehdyillä tunnelikytkennöillä. Järjestelmään kytketty demoni on myös yhden elektronin transistori, joka seuraa järjestelmän elektronien liikettä. Kun elektroni tulee saarekkeelle, demoni vangitsee sen positiivisella varauksella; kun elektroni lähtee saarekkeelta, demoni hylkii sitä negatiivisella varauksella ja pakottaa sen liikkumaan ylämäkeen, mikä laskee järjestelmän lämpötilaa, kertoo akatemiaprofessori Jukka Pekola.

Demonista tekee autonomisen eli omavaraisen se, että se hoitaa sekä mittaamisen että palautteen antamisen ilman ulkopuolista apua. Lämpötilamuutokset kertovat demonin ja järjestelmän välisestä korrelaatiosta, eli periaatteessa siitä, mitä demoni tietää järjestelmästä. Tutkimus ei olisi ollut mahdollinen ilman Kylmälaboratoriossa saavutettavia olosuhteita.

– Työskentelemme äärimmäisen matalissa lämpötiloissa, joten systeemi on eristetty niin hyvin, että äärimmäisten pienten lämpötilanmuutosten rekisteröinti on mahdollista, Pekola kuvailee.

– Elektroninen demoni reagoi ja antaa palautteen nopeasti, alle mikrosekunnin viiveellä, ja sillä voidaan tehdä lukemattomia toistokokeita, kun taas maailmalla molekyyleistä demoneita tehneet kollegat joutuvat tyytymään joihinkin satoihin toistoihin.

Pekolan johtaman ryhmän työ on perustutkimusta, mutta sen tulokset voivat viitoittaa tietä muun muassa palautuvaa laskentaa (reversible computing) hyödyntäville tietokoneille.

– Koska työskentelemme suprajohtavien virtapiirien kanssa, pystymme valmistamaan kvanttitietokoneiden kubitteja. Seuraavaksi haluammekin tarkastella näitä samoja ilmiöitä kvanttitasolla, Pekola paljastaa.

Artikkeli: J. V. Koski, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissilä and J. P. Pekola "On-chip Maxwell’s demon as an information-powered refrigerator"

Artikkelin abstrakti luettavissa osoitteessa http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.260602 ja pidempi, työtä taustoittava teksti Viewpoint: Exorcising Maxwell’s Demon osoitteessa http://physics.aps.org/articles/v8/127

Lisätietoja:

Akatemiaprofessori Jukka Pekola
Puh.  040 700 9290
[email protected]

 

Katso myös, kuinka Maxwellin demoni muuntaa tietoa energiaksi nanoteknologian avulla

 

 

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

TBC
Mediatiedotteet Julkaistu:

Tutkijat tekivät läpimurron Auringon magneettikentän ymmärtämisessä

Tutkimuksessa löydettiin näyttöä pienen skaalan dynamoksi kutsutulle toimintamekanismille Auringon magneettikentässä.
Puun taimia istutetaan Suomen ensimmäiseen hiilensidontaa tukevaan mikrometsään Keravalla
Yhteistyö, Mediatiedotteet, Tutkimus ja taide, Yliopisto Julkaistu:

Suomen ensimmäinen hiilensidontaa tukeva mikrometsä istutettu Keravalle

Keravan Kivisillan alueelle on istutettu Suomen ensimmäinen hiilensidontaa tukeva mikrometsä
Tutkimus ja taide Julkaistu:

Huoltokatko ACRIS-tutkimustietojärjestelmässä 5.6.2023

Huoltokatko ACRIS-tutkimustietojärjestelmässä 5.6.2023
The winning collection by Ruusa Vuori at Aalto University's fashion show Näytös23, a model walking on the catwalk
Palkinnot ja tunnustukset, Tutkimus ja taide, Opinnot Julkaistu:

Ruusa Vuori voitti Näytös23-palkinnon herkällä mallistollaan

Aalto-yliopiston muodin opiskelijoiden muotinäytöksessä perjantaina 26. toukokuuta nähtiin kandidaatti- ja maisteriopiskelijoiden mallistoja.