Uutiset

Kuvia luovien GAN-mallien mullistus sai Forbesin tekoälypalkinnon

Suomen tekoälykeskus FCAI:n yhteistyökumppani Nvidia kehitti mallin, joka vähentää kuvien luomiseen tarvittavan datan määrää. Nvidian tutkija Jaakko Lehtinen työskentelee myös professorina Aalto-yliopistossa ja Suomen tekoälykeskuksessa.
Gan.uvia
Esimerkkejä kuvista, jotka GAN loi pienemmällä datamäärällä. Kuva: Karras et al. (2020): Training Generative Adversarial Networks with Limited Data

Talouslehti Forbes on nostanut Suomen tekoälykeskus FCAI:hin liittyvän tutkimuksen listalleen, jossa se hehkuttaa vuonna 2020 tehtyjä tekoälysaavutuksia. Listalla on kaikkiaan kuusi saavutusta, joista Suomen tekoälykeskuksen kumppaniyritys Nvidia sai mullistavan innovaation tunnustuksen (most disruptive innovator).

Forbes ylistää erityisesti Nvidian läpimurtoja, jotka vähentävät merkittävästi GAN-tyyppisten generatiivisten neuroverkkojen koulutukseen tarvittavaa datan määrää. Kyseisen tutkimuksen taustalla on ryhmä Nvidian tutkijoita, heidän joukossaan myös Aalto-yliopiston professori ja Suomen tekoälykeskuksen jäsen Jaakko Lehtinen.

GAN-mallit oppivat Lehtisen mukaan niille annetun datan perusteella tuottamaan uutta, samankaltaista dataa. Lehtisen ja hänen kollegojensa työssä kyseinen data koostuu kuvista. Lehtinen avaa mekanismia kissoilla:

”Jos sinulle näytetään kuvia kissoista, pystyt tunnistamaan ne kissoiksi, vaikka et ole nähnyt niitä aiemmin. Tämä on mahdollista, koska kuvissa esiintyy tiettyjä yhteneväisyyksiä – kissat tuppaavat näyttämään tietynlaisilta, olemaan tietynlaisissa paikoissa, asennoissa ja niin edelleen", hän selittää.

GAN-mallin tarkoitus on tunnistaa alkuperäisestä datasta tällaisia yhteneväisyyksiä ja tuottaa niiden pohjalta uutta dataa, kuten keinotekoisia kissan kuvia.

Ongelma on, että korkealaatuisten tulosten saamiseksi GAN-malli tavallisesti tarvitsee kymmeniä- tai jopa satojatuhansia kuvia, joiden perusteella se luo itselleen säännöt uusien kuvien tuottamiseksi. Usein tällaisia esimerkkidatamassoja ei ole saatavilla.

Tässä on Lehtisen ja hänen kollegoidensa merkittävä saavutus: he onnistuivat vähentämään tarvittavien kuvien määrää jopa kymmenesosaan aiemmasta. Tämän mahdollistivat tutkijoiden tekemät muutokset prosessiin, jonka kautta algoritmi oppii alkuperäisestä datasta.

“Parempi käytettävyys saadaan aikaan laittamalla algoritmille hyvin erityisellä tavalla rikotut silmälasit päälle, kun se katselee opetuskuvajoukkoa, Lehtinen selittää.

Käytännössä tämän kaltaista tutkimusta hyödynnetään yhä enemmän esimerkiksi lääketieteellisessä tutkimuksessa, jonka piirissä tarvittava data on tyypillisesti arkaluontoista ja siksi hankalasti saatavilla. Koska sairaalat ymmärrettävästi varjelevat potilaidensa tietoja, malli, joka tuottaa rajallisen alkuperäistiedon pohjalta uutta, keinotekoista ja siten yksityisyydensuojan kannalta ongelmatonta dataa, voi olla tutkijoille valtavan arvokas.

Lehtisen ja kollegojen kehittämä GAN-malli kuuluu StyleGAN-malliperheeseen. Suomen tekoälykeskuksessa tutkimus liittyy tiiviisti kahteen keskuksen päätutkimusohjelmista, eli simulaattoripohjaisen tekoälyn (R2) ja datatehokkaan syväoppimisen (R3) ohjelmiin.

Linkki tutkimusartikkeliin

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Kunniamerkki, Suomen Leijona
Palkitut Julkaistu:

Kunniamerkkejä aaltolaisille itsenäisyyspäivänä

Tasavallan presidentin myöntämiä kunniamerkkejä saa 22 henkilöä Aalto-yliopistosta. Onnittelut saajille!
Yrjö Neuvo
Palkitut Julkaistu:

Yrjö Neuvo sai Nokian säätiön tunnustuspalkinnon

Neuvo palkittiin työstään tohtorikoulutuksen kehittämiseksi ja tohtoreiden työllistämiseksi yritysmaailmaan.
The picture shows doctoral student Hunter Jones in the front of the School of Business. The photo comes from Hunter Jones.
Palkitut, Tutkimus ja taide Julkaistu:

Tohtorikoulutettava Hunter Jones voitti merkittävän palkinnon

ACR-järjestön jakama palkinto annetaan kongressiesitelmälle, jolla on potentiaalia vaikuttaa merkittävästi tieteenalan kehitykseen.
Jere Lehtinen
Palkitut Julkaistu:

Jere Lehtinen palkittiin väitöstutkimuksestaan Academic PM Award ja IPMA Global Research Award -palkinnoilla

Projektiammattilaiset ry palkitsi vuoden 2021 menestyjiä projektialalla. Yksi palkituista on Jere Lehtinen väitöstutkimuksellaan External stakeholder engagement in complex projects. Väitöstutkimukselle myönnettiin Academic PM Award-palkinto kategoriassa akateeminen tutkimus. Lehtisen tutkimustyö palkittiin myös hiljattain kansainvälisellä IPMA Global Research Award -palkinnolla kansainvälisen projektinhallinnan yhdistyksen (IPMA) toimesta.