Erittäin nopea laser saadaan aikaan kultananopartikkeleiden avulla

Uudessa tutkimuksessa on luotu laservaloa, jossa valopulssit ovat erittäin lyhyitä ja nopeasti toistuvia. Laservalon tuottamiseen käytettiin metallisia nanorakenteita ja orgaanisia väriaineita. Niiden valmistaminen on edullista, joten uusilla lasereilla on potentiaalia kaupallisen teknologian kehittämiseen.
”Halusimme selvittää, miten nopeita laservalon pulsseja voimme saada aikaan – eli miten nopeasti saamme kytkettyä laserin edestakaisin päälle ja pois. Erittäin nopeiden pulssien tuottaminen voi olla hyödyllistä tietojenkäsittelyssä ja optoelektronisissa laitteissa”, Aalto-yliopiston tutkijatohtori Konstantinos Daskalakis kertoo.
Kokeissa käytetyt näytteet on tehty kultananopartikkeleista, jotka on valmistettu lasille ja upotettu orgaaniseen, valoa säteilevään materiaaliin. Partikkelit on järjestetty neliönmuotoiseen hilaan erittäin lähelle toisiaan, ja niiden ympärillä oleva voimakas sähkömagneettinen kenttä saa väriaineen molekyylit reagoimaan nopeasti.
Kenttien, kultananopartikkelien ja orgaanisen väriaineen vuorovaikutuksesta syntyy ultranopeita, vain sekunnin biljoonasosien mittaisia laserpulsseja.
Niin nopea laser on lupaava esimerkiksi täysin optisten kytkimien ja sensorien kehittämisen kannalta. Valoa tiedonkäsittelyyn käyttävien laitteiden – kameroiden, transistorien ja telekommunikaatioteknologian – suorituskyky ja -nopeus voisivat myös parantua.
Erittäin pienien nanolasereiden säteet ovat harvoin hyvin suunnattuja. Nanopartikkelien järjestäminen hilamuodostelmaan parantaa säteen suuntautuneisuutta huomattavasti. Tällä tavalla tuotettuja lasereita on luotu useissa laboratorioissa eri puolilla maailmaa, mutta niiden kykyä tuottaa ultranopeita pulsseja ei ole todistettu ennen Aalto-yliopiston kokeita.
Pulssien ominaisuuksien mittaaminen on erittäin vaativaa niiden valtavan nopeuden vuoksi.
”Keskeinen tuloksemme on se, että osoitimme kokeellisesti näytteidemme laserpulssien todella olevan ultranopeita. Laserointi tapahtuu optisissa tiloissa, jotka ovat valon ja metallin elektronien liikkeen yhdistelmiä. Tiloja kutsutaan pintahilaresonansseiksi”, selittää akatemiaprofessori Päivi Törmä.
Laservalo puristetaan ensin metallisten nanopartikkelien avulla valon aallonpituutta pienempään tilaan. Sen jälkeen valo vapautuu pintahilaresonansseista sekunnin biljoonasosien välein sykkiviin, tiiviisiin laserpulsseihin.
”Tällaiset laserit ovat erityisen hyviä tuottamaan lasersäteilyä, jonka modulaatiotaajuus on korkea”, kertoo tohtoriopiskelija Aaro Väkeväinen.
Nanopartikkeli-laserilla tuotettu pulssi on niin nopea, ettei tavallisilla sähköisillä kameroilla voida tallentaa sen liikettä. Tutkijat käyttivät toista laseria ikään kuin kamerana saadakseen erittäin nopeita ”kuvia” piskuisesta laserista. Menetelmää kutsutaan ultranopeaksi spektroskopiaksi.
Lisätietoja:
Päivi Törmä, akatemiaprofessori, Aalto-yliopisto
[email protected]
puh. 050 382 6770
Quantum Dynamics –tutkimusryhmä
Konstantinos Daskalakis, tutkijatohtori, Aalto-yliopisto
[email protected]
puh. 050 4414 270
Lue lisää uutisia

Mitä koirien ja kissojen aivoissa tapahtuu? Uusi kuvantamismenetelmä selvittää lemmikkien mielen saloja
Aalto-yliopiston professori Lauri Parkkosen ryhmä on vuosia kehittänyt kvanttioptisia antureita aivomagneettikäyrän eli magnetoenkefalografian (MEG) mittaamiseen. Toisin kuin perinteisessä MEG-laitteessa, jossa hyvin kylmässä toimivat suprajohtavat anturit vaativat ympärilleen senttimetrejä paksun lämpöeristeen, nämä uudet huoneenlämpötilassa toimivat anturit voidaan tuoda suoraan pään pinnalle. Tämä mahdollistaa entistä tarkemmat aivomagneettikäyrien mittaukset. MEG-kuvantaminen on tutkittavalle kivutonta ja turvallista.
Ikuinen liike on mahdollista – Aalto-yliopiston Kylmälaboratoriossa havainnoitiin kahden fysiikan lait haastavan aikakiteen välistä vuorovaikutusta
Aikakiteet ovat aineen olomuoto, jossa hiukkaset liikkuvat ikuisesti toistuvassa rytmissä ilman ulkopuolista energiaa. Tutkijat onnistuivat luomaan Aalto-yliopiston Kylmälaboratoriossa kaksi aikakidettä ja tarkkailemaan niiden välistä vuorovaikutusta. Tulevaisuudessa aikakiteitä voi hyödyntää erilaisissa laitteissa, kuten kvanttitietokoneiden muistina.
Kannettava ja nopea analysointityökalu voi mullistaa kipulääkkeiden diagnostiikkamarkkinat
Aalto-yliopistosta ponnistanut startup-yritys Fepod Oy Ltd on kehittänyt diagnoosimenetelmän, jolla potilaan veren kipulääkepitoisuus voidaan selvittää nopeasti ja edullisesti suoraan hoitopaikalla.