Uutiset

Tutkijat valjastivat bakteerit sokerilla ja proteiinilla käyviksi 3D-tulostimiksi

Bakteerit muodostivat räätälöityjä nanonselluloosarakenteita äärimmäisen vettähylkivän pinnan ohjaamina. Ainutlaatuista materiaalia voidaan käyttää esimerkiksi kudosvaurioiden korjaamisessa.
Bakteerien valmistamaa nanoselluloosaa
Mikroskooppikuva bakteerien valmistamasta nanoselluloosamateriaalista. Kuitujen asettumista ohjattiin säätelemällä bakteerien hapensaantia. Kuva: Luiz Greca

Äärimmäisen vettähylkivät eli superhydrofobiset pinnat torjuvat paitsi kosteutta myös likaa, pölyä ja erilaisia taudinaiheuttajia, kuten bakteereja.

Nyt Aalto-yliopiston tutkijat ovat hyödyntäneet superhydrofobisia pintoja saadakseen Komagataeibacter medellinensis -bakteerit tekemään nanoselluloosasta räätälöityjä, kolmiulotteisia rakenteita.

”Meillä oli tavallaan käytössämme miljardeja pienenpieniä 3D-tulostimia. Oikeilla raaka-aineilla ja ohjeilla ne osaavat tehdä erinomaisia materiaaleja”, tohtorikoulutettava Luiz Greca sanoo.

Vaikka bakteerien valmistaman yksittäisen nanoselluloosakuidun paksuus on vain hiuksen halkaisijan tuhannesosa, kuitujen muodostama rakenne on sekä vahva että sitkeä. Aiemmat tutkimukset ovat myös osoittaneet, että nanoselluloosa on bioyhteensopiva eli se ei aiheuta haittaa elimistölle. Tutkijat uskovatkin, että bakteerien kasvattamia nanoselluloosarakenteita voidaan käyttää tukirakenteina uusille kudoksille tai elimille.

”On kiehtovaa, miten jykeviä materiaaleja bakteerit pystyvät tuottamaan. Tutkimme parhaillaan, voisiko nanoselluloosamateriaaleja hyödyntää esimerkiksi ikääntymisestä johtuvien kudosvaurioiden hoidossa”, tutkimusryhmää johtava professori Orlando Rojas kertoo.

Tutkimuksen tulokset julkaistiin juuri ACS Nano -tiedelehdessä.

Bakteerien valmistama, verisuonia jäljittelevä rakenne. Kuva: Valeria Azovskaya
Bakteerien valmistama, verisuonia jäljittelevä rakenne. Kuva: Valeria Azovskaya

Happea piikkimatolla

Tutkijat laittoivat vettähylkiviksi pinnoitetut silikonimuotit kasvatusmaljoihin, joissa oli bakteerien ravintonaan käyttämää, sokeria ja proteiineja sisältävää vesiliuosta.

Koska Komagataeibacter medellinensis on aerobinen eli happea tarvitseva bakteeri, se suuntaa normaalisti kasvatusmaljassa liuoksen pinnalle ja rakentaa siihen nanoselluloosakuiduista ohuen kalvon eräänlaiseksi suojakilveksi.

Vettähylkivät hiukkaset taas muodostavat muotin pintaan piikkimattoa muistuttavan rakenteen. Vesiliuos lepää piikkien kärkien varassa, ja piikkien väliin jää ilmaa, jota kohti bakteerit hakeutuvat kasvattamaan nanoselluloosakuitujaan. Tutkijat säätivät paineen avulla ilmakerroksen paksuutta ja ohjasivat näin bakteerit kasvattamaan nanoselluloosakuituja haluttuun suuntaan. Lopputuloksena oli kulloisenkin muotin mallinen, kolmiulotteinen nanoselluloosarakennelma.

Nanoselluloosarakennelmien koko vaihteli halkaisijaltaan hiuksen kymmenesosasta jopa 20 senttimetriin. Tutkijat saivat bakteerit rakentamaan muun muassa keuhkorakkuloita jäljitteleviä rakenteita. Menetelmä mahdollistaa paitsi kuitujen suunnan ohjaamisen myös pinnan paksuuden ja muodon säätämisen, mikä on äärimmäisen tärkeää, kun materiaalia halutaan käyttää tukirakenteina tiettyjen lihasten ja aivojen kudosten korjaamisessa.

“Toivomme, että tulokset rohkaisevat sekä bakteereja hylkivien pintojen kanssa työskenteleviä että bakteerien avulla materiaaleja valmistavia tutkijoita”, sanoo tutkijatohtori Blaise Tardy.

Julkaisu:

Greca, L. G., Rafiee, M., Karakoç, A., Lehtonen, J., Mattos, B. D., Tardy, B. L., & Rojas, O. J. (2020). Guiding Bacterial Activity for Biofabrication of Complex Materials via Controlled Wetting of Superhydrophobic Surfaces. ACS Nano. https://doi.org/10.1021/acsnano.0c03999

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

A night sky with the northern lights visible behind the silhouettes of trees. / Yötaivas, jossa revontulet näkyvät puiden siluettien takana.
Mediatiedotteet Julkaistu:

Revontuulten äänet voi kuulla, vaikka niistä ei taivaalla näy vilaustakaan

Äänitallenteet paljastavat, että geomagneettiseen aktiivisuuteen liittyy ääniä, vaikka aktiivisuus olisi liian heikkoa saadakseen aikaan näkyviä revontulia
Ensimmäinen kuva Linnunradan keskellä olevasta mustasta aukosta. Kuva: EHT Collaboration
Mediatiedotteet Julkaistu:

Tähtitieteilijät paljastivat ensimmäisen kuvan galaksimme ytimessä olevasta mustasta aukosta

Aalto-yliopiston, Turun yliopiston sekä Suomen ESO-keskuksen tutkijat osallistuivat käänteentekevän kuvan ottamiseen.
Aalto_glass_challenge_2018_Jaea Chang_Glass_Lake_Photo_Anne_Kinnunen_KDQ0207.jpg
Mediatiedotteet Julkaistu:

Koneen Säätiöltä 800 000 euron lahjoitus Aalto-yliopiston taiteiden ja suunnittelun alalle

Lahjoituksellaan säätiö haluaa tukea erityisesti taiteen tutkimusta ja taiteellista tutkimusta. Taustalla on toive turvata oppialojen moninaisuutta ja tutkimuksen vapautta koulutusaloilla, jotka ovat kärsineet rahoitusleikkauksista ja koulutuspolitiikan priorisoinneista.
Maanviljelijä ajaa traktoria riisipellolla
Mediatiedotteet Julkaistu:

20 miljoonan ihmisen koti uhkaa jäädä veden alle Kaakkois-Aasiassa – tutkijat kertovat kuusi keinoa tuhon jarruttamiseen

Ilman päättäväisiä ja nopeita toimia nouseva merivesi voi peittää Mekong-joen suiston lähes kokonaan jo vuosisadan loppuun mennessä.