Uutiset

Uusi, tehokas katalyytti vauhdittaa puhtaan vetypolttoaineen valmistusta

Tutkijat ovat kehittäneet lupaavan materiaaliyhdistelmän grafeenista, hiilinanoputkista ja epäpuhtausatomeista.
carbon nanotube and graphene cartoon
Kaaviokuva grafeenin ja hiilinanoputken hybridinanomateriaalista, kun materiaalin yksittäisiä atomeja on korvattu epäpuhtausatomeilla. Materiaali katalysoi tehokkaasti tärkeitä sähkökemiallisia reaktioita veden elektrolyysilaitteissa sekä polttokennoissa.

Vedyllä toimivat polttokennot ovat lupaava, puhdas vaihtoehto fossiilisille polttoaineille etenkin ajoneuvoissa. Niiden yleistyminen edellyttää paitsi edullisia ja tehokkaita polttokennoja, myös sähkökatalyyttejä, jotka tuottavat vetyä vähäpäästöisesti, sähkökemiallisessa reaktiossa.

Prosessi on sitä tehokkaampi, mitä vähemmän energiaa menetetään, kun vesi hajotetaan hapeksi ja vedyksi. Katalyytillä on prosessissa merkittävä rooli, ja siksi tehokkaiden ja edullisten katalyyttien kehittäminen on tärkeää.

Aalto-yliopiston fysiikan ja kemian tutkijat ovat yhteistyössä ranskalaisten ja itävaltalaisten tutkijoiden kanssa kehittäneet uuden katalyyttimateriaalin, joka nopeuttaa sähkökemiallisia reaktioita enemmän kuin mikään nykyisin kaupallisesti saatavilla oleva katalyyttimateriaali.

”Haluamme korvata perinteiset arvometalleihin, kuten platinaan ja iridiumiin, perustuvat kalliit ja harvinaiset katalyytit erittäin aktiivisilla, edullisilla ja hyvin saatavilla olevilla vaihtoehdoilla. Näitä ovat esimerkiksi grafeeni ja hiilinanoputket sekä typpi ja jotkin siirtymämetallit kuten kupari ja rauta”, sanoo Aalto-yliopiston tutkijatohtori Mohammad Tavakkoli.

Siirtymämetallit ovat hyvin reaktiivisia ja muodostavat helposti erilaisia yhdisteitä.

A microscope image of a carbon nanotube and graphene catalyst
Pyyhkäisy-läpivalaisuelektronimikroskoopilla otettu kuva hybridinanomateriaalista, jossa yksittäinen atomi on korvattu metalliatomilla. Yksi nanometri (nm) vastaa metrin miljardisosaa. © Kimmo Mustonen 2020, Wienin Yliopisto.

Tutkijat loivat erittäin huokoisen materiaaliyhdistelmän grafeenista ja hiilinanoputkista ja korvasivat osan materiaaliyhdistelmän hiiliatomeista muiden hyviksi katalyyteiksi tiedettyjen alkuaineiden yksittäisillä atomeilla. Nämä epäpuhtausatomit tekivät huokoisesta materiaaliyhdistelmästä entistäkin tehokkaamman.

Tavallisesti katalyytit asetetaan loppusovelluksessa – tässä tapauksessa sähkökemiallisessa kennossa –  katalyytin pohjana toimivan substraatin eli kasvatusalustan pinnalle. Tutkijat kasvattivat katalyysimateriaalia itse kehittämällään, kemialliseen synteesiin perustuvalla menetelmällä. Siinä esikäsitelty substraatti, hiiltä sisältävää kaasua sekä epäpuhtausatomien lähteitä laitetaan kasvatusuuniin. Katalyyttinä toimivat nanomateriaalit muodostuvat kasvatusuunissa riittävän korkeassa lämpötilassa, tyypillisesti noin 1000 celsiusasteessa.

Yksi uuden katalyysimateriaalin tehokkuuden salaisuuksista on sen huokoisuus.

”Sen ansiosta katalyytin, kasvatusalustan sekä katalysoitavan aineen eli tässä tapauksessa veden välinen aktiivinen pinta-ala on todella suuri. Esimerkiksi sormenpään kokoinen kalvo nanohiiliputkea saattaa pinta-alaltaan vastata muutamaa tenniskenttää. Pinta-ala suhteessa tilavuuteen on äärimmäisen suuri, ja tämä on keskeinen tekijä katalyytin aktiivisuudelle”, kertoo vanhempi tutkija Kimmo Mustonen Wienin yliopistosta.

Tutkimustulokset voivat parhaimmillaan ohjata vetyä energianaan käyttävien laitteiden järkevää suunnittelua.

”Vetyteknologia on erityisen hyödyllinen paljon energiaa tarvitsevissa ja liikkuvissa laitteissa. Käyttökohteita löytyy esimerkiksi avaruusteknologiassa, satelliittipuhelimissa tai tavarakuljetuksiin tarkoitetuissa droneissa. Vetypolttokennoissa on yksinkertaisuutensa vuoksi hyvä toimintavarmuus ja suuri energiatiheys. Niitä voidaan myös käyttää siellä missä sähkövirtaa ei ole saatavissa tai akkuteknologia ei ole riittävä”, sanoo Kimmo Mustonen.

Tutkimuksessa olivat Aalto-yliopiston lisäksi mukana CNRS-tutkimuskeskus Ranskassa ja Wienin yliopisto Itävallassa.

Lisätietoa:

Artikkeli: Mesoporous Single-Atom-Doped Graphene‒Carbon Nanotube Hybrid: Synthesis and Tunable Electrocatalytic Activity for Oxygen Evolution and Reduction Reaction: https://doi.org/10.1021/acscatal.0c00352

Mohammad Tavakkoli (englanniksi)
Tutkijatohtori
Aalto-yliopisto
puh. 050 414 0950
[email protected]

Kimmo Mustonen
Vanhempi tutkija
Wienin yliopisto
puh. +43 (0) 677 615 87996
[email protected]

  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

Natal Mind voittajatiimi, kuva: Polar Bear Pitching
Palkinnot ja tunnustukset Julkaistu:

Hyppy kylmään veteen yhdistää avannossa pitchaamista ja synnytystä

Natal Mind -tutkimustiimi voitti Polar Bear Pitching -kilpailun viikonloppuna Oulussa. Synnytyslääkäri Aura Pyykönen kertoo, miltä tuntui pitchata jääkylmässä avannossa. Voittajatiimiin kuuluvat lisäksi Annika Järvelin, Riikka Lemmetyinen ja Henni Tenhunen Aallon tuotantotalouden laitokselta.
Jokimaisema, jossa taustalla aavikkoa. Välissä kulkee tie, jossa ajaa rekka-auto.
Mediatiedotteet Julkaistu:

Tutkimus: Ihmisen toiminta ajanut maapallon makean veden kierron pois tasapainosta

Ihmisen toiminta on muokannut rajusti makean veden kiertokulkua maailmanlaajuisesti esiteolliseen aikaan verrattuna.
Lara Ejtehadian, Patrick Rinke, and Ilari Lähteenmäki sitting with coffee mugs and smiling to the camera.
Palkinnot ja tunnustukset, Tutkimus ja taide Julkaistu:

Aalto-yliopiston avoimen tieteen palkinnon 2023 voittaja – Aalto Materials Digitalization Platform (AMAD)

Haastattelimme Aallon ensimmäisen avoimen tieteen palkinnon voittajia AMAD-tiimistä.
People at the campus
Yhteistyö, Tutkimus ja taide Julkaistu:

CESAER Task Force Openness of Science and Technology vierailee Aallossa

Aalto-yliopisto järjestää CESAER Task Force Openness of Science and Technologyn tapaamisen 16.–17.4.2024.