Uutiset

Tutkijat kehittivät uuden tavan tehdä kryogeenisiä mittauksia

Kubitin kanssa samalle kvanttisirulle sijoitettava bolometri tekee lämpötilan mittaamisesta huomattavasti aiempaa helpompaa ja halvempaa
Mikrobolometri integroituna resonanssipiiriin näyttää yksityiskohtaisen näkymän useilla suurennoksilla.
Layout of the measured device: a λ/4 CPW resonator (dark blue) is coupled to a probing feedline (light blue) and an on-chip bolometer (inside yellow dashed-line). Figure: Christoforus Dimas Satrya/Aalto University.

Suprajohtavat kubitit ovat kvanttiteknologioiden rakennuspalikoita. Niiden potentiaali mullistaa taloutta, teollisuutta ja yhteiskuntaa on valtava, mutta toistaiseksi ratkaistavana on monia teknisiä ongelmia. Kubitit eivät toimi kuin sekunnin murto-osien verran, ne vaativat erityisiä olosuhteita ja niissä esiintyy paljon virheitä. 

Suprajohtimien laitteiden karakterisointi on tärkeä osa niiden kehitystyötä. Se perustuu usein radiotaajuuksien mittaamiseen, mihin tarvitaan monimutkaisia ja kalliita laitteita. Toinen vaihtoehto on keskittyminen lämpötilaan, mikä on huomattavasti suoraviivaisempaa.

Nyt Aalto-yliopiston teknillisen fysiikan laitoksen professori Jukka Pekola, tutkijatohtori Christoforus Dimas Satrya ja OtaNanon tutkija Yu-Cheng Chang ovat kehittäneet kvanttisirulle sijoitettavan bolometrin, joka tekee kubitin lämpötilan seuraamisesta huomattavasti aiempaa helpompaa ja halvempaa. 

Tutkimus julkaistiin arvostetussa Nature Communications -lehdessä: https://www.nature.com/articles/s41467-025-58919-8

“Bolometrimme toimii havainnoimalla sähkön tasavirtaa, mikä on paljon yksinkertaisempaa kuin aiempi radiotaajuuksiin perustuva mittaaminen”, Satrya sanoo.

Kubitin kanssa samassa kvanttisirussa sijaitseva bolometri havaitsee äärimmäisen pienen hiukkasen nimeltään fotonin, joka karkaa suprajohtavaksi resonaattoriksi kutsutusta komponentista. Fotoni saa bolometrin lämpötilan nousemaan, mikä puolestaan havaitaan mittaamalla sen sähkövirtaa. Yleensä näin pienien lämpötilamuutosten mittaaminen ultrakylmissä kvanttiolosuhteissa on kallista ja hankalaa.

“Kvanttimittauksiin tarvitaan erilaisia osia kuten vahvistimia ja isolaattoreita, jotka voivat maksaa jopa tuhansia euroja. Lisäksi ne saavat aikaan suprajohtimille haitallisia magneettikenttiä ja kuluttavat paljon energiaa. Meidän laitteellamme mitään näistä ei tarvita”, Chang sanoo. 

Suoraviivaisuuden lisäksi keksinnön toinen valttikortti on yli kymmenkertainen taajuuksien skaala aiempaan verrattuna.

“Radiotajuuksien mittaamisen skaala on noin neljästä kahdeksaan gigahertsiä, kun meillä yläraja on 200. Se tarkoittaa, että tutkija voi hyödyntää sekä hyvin matalia että hyvin korkeita taajuuksia samalla laitteistolla”, Satrya jatkaa. 

Keksintö on merkittävä apu entistä parempien kvanttiteknologioiden kehittämisessä. 

“Nykyään on trendi, jossa tutkijat haluavat karakterisoida kubitteja käyttäen aina vaan korkeampia taajuuksia. Se ei ollut mahdollista aiemmilla laitteistoilla”, Pekola sanoo. 

Tieteellisen tutkimustyön lisäksi bolometriä voisi käyttää myös teollisuudessa. 

“Sen voisi helposti integroida esimerkiksi kvanttilaitteiden tuotantolinjaan tutkimaan niiden ominaisuuksia tarkemmin ennen valmistusprosessin seuraavia vaiheita”, Chang sanoo. 

Tutkijat hyödynsivät Suomen kansalliseen nano-, mikro- ja kvanttiteknologioiden tutkimusinfrastruktuuri OtaNanoon kuuluvia Micronovan puhdastiloja tutkimuksessaan.

Samples

Pico - Quantum Phenomena and Devices

We investigate mesoscopic physics and its sensor applications. The main focus is on charge transport and thermal properties of metallic, superconducting and hybrid nanostructures.

Department of Applied Physics
Aalto yliopisto piisirulla

OtaNano

Otaniemen mikro- ja nanoteknologioiden infrastruktuuri OtaNano on kansallinen tutkimusinfrastruktuuri kilpailukykyisen tutkimuksen harjoittamiseen nanotieteiden ja -teknologian sekä kvanttiteknologioiden alalla.

QTF-hero logo

Quantum Technology Finland – The National Centre of Excellence (ulkoinen linkki)

The national Quantum Technology Finland (QTF) Centre of Excellence brings together scientific and technological excellence and cutting-edge research infrastructures to harness quantum phenomena in solid-state-based quantum devices and applications.

  • Päivitetty:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Henkilö puhuu älykelloon, jossa on hopeinen verkkoranneke ja näytöllä aaltomuoto.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Äänesi paljastaa enemmän kuin uskot – tutkijat kehittävät keinoja suojata puheeseen kätkeytyvää tietoa

Puheteknologiat yleistyvät vauhdilla, ja samalla kasvaa riski siitä, että ääni paljastaa arkaluonteista tietoa terveydestä, taustoista tai mielipiteistä. Aalto-yliopiston tutkijat kehittävät keinoja mitata ja rajoittaa sitä, mitä kaikkea puheesta voidaan päätellä.
Kolme ihmistä istuu bussipysäkillä, takanaan karttoja ja kylttejä. Yhdellä on reppu maassa.
Tutkimus ja taide Julkaistu:

Aallon vuosi 2025: Kvanttihyppyjä, luovia loikkia ja ratkaisuja parempaan elämään

Kasvua, teknologiaa ja teollisuuden uudistumista, ihmislähtöisiä ratkaisuja, terveys ja arjen hyvinvointi sekä hauskaa arkea ja toimivia yhteisöjä.
arotor adjustable stiffness test setup
Yhteistyö, Tutkimus ja taide Julkaistu:

Miljoonarahoitus uuden sukupolven koneteknologian kehittämiseen – tavoitteena tuottavuusloikka useilla vientialoilla

BEST-hankkeessa kehitetään uudenlaisia tiiviste-, laakerointi- ja vaimennusteknologioita useiden teollisuudenalojen käyttöön.
Unite! Seed Fund 2026: Hakemus alkaa 20. tammikuuta. Hakemukset avoinna opiskelijatoimintaan, opetukseen ja tutkimukseen.
Yhteistyö, Tutkimus ja taide, Opinnot, Yliopisto Julkaistu:

Unite! Seed Fund 2026: Hakukierros avautuu 20. tammikuuta 2026

Tutustu ennakkoon Unite! Seed Fund 2026 -hakukierrokseen. Haku sisältää kolme rahoituslinjaa: opiskelijatoiminta, opetus ja oppiminen sekä tutkimus ja tohtorikoulutus.