Uutiset

Terveyspalvelujen käyttöä ennustava neuroverkkomalli voi säästää miljoonia

Suomessa kehitetty malli ennustaa iäkkäiden terveyspalveluiden käyttöä ja voi auttaa kohdentamaan rahoituksen tasapuolisemmin.

Illustration of neural networks in a hospital environment
Kuvituskuva: Matti Ahlgren / Aalto-yliopisto

Syvät neuroverkot ovat ihmisaivojen toimintaa jäljitteleviä koneoppimismenetelmiä. Nyt Aalto-yliopiston, Helsingin yliopiston ja Terveyden ja hyvinvoinnin laitoksen (THL) tutkijat ovat kehittäneet syvien neuroverkkojen avulla niin sanotun riskivakiointimallin. Se ennustaa, miten usein ikäihmiset käyvät vuoden aikana hoidettavina esimerkiksi terveyskeskuksessa tai sairaalassa.

Riskivakiointimallien tarkoituksena on ennustaa terveydenhuollon palveluiden käyttöä edellisten vuosien tietojen perusteella ja auttaa näin jakamaan rahoitusta terveydenhuollon palveluiden tarjoajille reilusti ja tehokkaasti. Malleja hyödynnetään monissa maissa, kuten Saksassa, Alankomaissa ja Yhdysvalloissa. Myös THL on kehittänyt malleja, joita voidaan käyttää Suomessa rahoituksen jakamiseen kunnille.

”Ilman mallia sellaiset terveyspalveluiden tuottajat, joiden potilaat sairastavat keskimääräistä enemmän, joutuisivat epäreiluun asemaan”, Aalto-yliopiston apulaisprofessori Pekka Marttinen sanoo. 

Nykyisin käytössä olevat mallit perustuvat perinteisiin tilastollisiin regressiomalleihin. Tämä oli ensimmäinen kerta, kun tutkijat käyttivät riskivakiointimallin kehittämisessä syviä neuroverkkoja. Tutkimus osoitti, että neuroverkkomalli on ennustuksissaan perinteisiä menetelmiä selvästi luotettavampi ja tarkempi. Näin se voi auttaa jakamaan rahaa palveluntuottajien todellisen tarpeen mukaan ja kannustaa niitä kustannustehokkuuteen. 

”Tällaisen mallin kehittäminen voi auttaa säästämään miljoonia euroja”, sanoo tohtorikoulutettava Yogesh Kumar.

Tutkijat opettivat mallia THL:n perusterveydenhuollon avohoidon hoitoilmoitusrekisteristä (Avohilmo) saatavilla tiedoilla, joissa on mukana jokaisen 65 vuotta täyttäneen suomalaisen terveydenhuollon avokäynnit. Data on pseudonymisoitu eli yksittäistä henkilöä ei voi tunnistaa sen perusteella. Avohilmoa hyödynnettiin nyt ensimmäistä kertaa koneoppimismallin kouluttamiseen.

Syvät neuroverkot eivät myöskään välttämättä vaadi valtavasti dataa tuottaakseen luotettavia tuloksia. Tutkimuksessa malli oli verrokkimenetelmiä tarkempi jopa silloin, kun se pystyi hyödyntämään vain noin kymmentä prosenttia kaikesta saatavilla olevasta datasta. Luotettavien tulosten saaminen suhteellisen pienellä tietomäärällä on tärkeää, sillä lääketieteessä suurten datamassojen saaminen tutkimuskäyttöön on vaikeampaa kuin monilla muilla aloilla.

”Tässä työssä kehitettyä mallia ei ole tarkoitus ottaa käyttöön sellaisenaan, vaan tavoitteena on integroida koneoppimismallien ominaisuuksia nykyisin käytettäviin malleihin. Näin voimme yhdistää eri menetelmien parhaat puolet”, Marttinen huomauttaa. 

”Tulevaisuudessa tavoitteena on hyödyntää näitä malleja päätöksenteon tukena, jolloin rahoitus saadaan jaettua asianmukaisemmin.”

Mallissa voidaan myös keskittyä esimerkiksi potilasryhmiin, joiden hoito on kallista tai terveyskeskuksiin tietyillä maantieteellisillä alueilla. Tutkimustulokset julkaistiin Proceeding of Machine Learning Research -julkaisusarjassa.

Lisätiedot

Yogesh Kumar (englanniksi)
Tohtorikoulutettava
Aalto-yliopisto, Suomen tekoälykeskus
[email protected]

Pekka Marttinen
Apulaisprofessori
Aalto-yliopisto, Suomen tekoälykeskus
Puh. 050-5124362
[email protected]

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lisää tästä aiheesta

Photo: Koite Health.
Tiedotteet Julkaistu:

Uusi menetelmä tappaa hampaista haitalliset bakteerit – hyötyjiä erityisesti syöpäpotilaat ja diabeetikot

Suomalaistutkijoiden kehittämä turvallinen menetelmä perustuu kaksoisvalohoitoon. Menetelmä ei häiritse suun normaalia bakteeriflooraa eikä aiheuta resistenssiä.
Annual Review: Dean Tuomas Auvinen, professor Jenni Reuter, HR Coordinator Hanna Nurmela. Photo: Enni Grundström
Palkitut, Tiedotteet, Tutkimus ja taide Julkaistu:

Taiteiden ja suunnittelun korkeakoulun vuosikatsauksessa juhlittiin vuoden 2019 huippuhetkiä

Helmikuun 5. päivä 2020 järjestetyssä tapahtumassa jaettiin yhteensä yhdeksän tunnustuspalkintoa Aalto ARTS -yhteisön jäsenille.
Kiertotalouslaboratorio, Ted Nuorivaara
Tiedotteet Julkaistu:

Kiertotalouden yhteislaboratorio avautui Otaniemessä

Geologian tutkimuskeskus GTK, VTT ja Aalto-yliopisto kehittävät Circular Raw Materials Hubissa ratkaisuja hiilineutraalin ja resurssitehokkaan yhteiskunnan tarpeisiin yhdessä teollisuuden kanssa.
Costa Smeralda varustelulaiturissa (Kuva: Meyer Turku Oy)
Tiedotteet Julkaistu:

Meyer Turku ja Aalto-yliopisto syvempään yhteistyöhön meritekniikan tutkimuksessa ja opetuksessa 

Tavoitteena on vahvistaa ja kehittää monialaista tutkimusyhteistyötä ja opetusta sekä tehostaa asiantuntijayhteistyötä.