Uutiset

Terveyspalvelujen käyttöä ennustava neuroverkkomalli voi säästää miljoonia

Suomessa kehitetty malli ennustaa iäkkäiden terveyspalveluiden käyttöä ja voi auttaa kohdentamaan rahoituksen tasapuolisemmin.

Illustration of neural networks in a hospital environment
Kuvituskuva: Matti Ahlgren / Aalto-yliopisto

Syvät neuroverkot ovat ihmisaivojen toimintaa jäljitteleviä koneoppimismenetelmiä. Nyt Aalto-yliopiston, Helsingin yliopiston ja Terveyden ja hyvinvoinnin laitoksen (THL) tutkijat ovat kehittäneet syvien neuroverkkojen avulla niin sanotun riskivakiointimallin. Se ennustaa, miten usein ikäihmiset käyvät vuoden aikana hoidettavina esimerkiksi terveyskeskuksessa tai sairaalassa.

Riskivakiointimallien tarkoituksena on ennustaa terveydenhuollon palveluiden käyttöä edellisten vuosien tietojen perusteella ja auttaa näin jakamaan rahoitusta terveydenhuollon palveluiden tarjoajille reilusti ja tehokkaasti. Malleja hyödynnetään monissa maissa, kuten Saksassa, Alankomaissa ja Yhdysvalloissa. Myös THL on kehittänyt malleja, joita voidaan käyttää Suomessa rahoituksen jakamiseen kunnille.

”Ilman mallia sellaiset terveyspalveluiden tuottajat, joiden potilaat sairastavat keskimääräistä enemmän, joutuisivat epäreiluun asemaan”, Aalto-yliopiston apulaisprofessori Pekka Marttinen sanoo. 

Nykyisin käytössä olevat mallit perustuvat perinteisiin tilastollisiin regressiomalleihin. Tämä oli ensimmäinen kerta, kun tutkijat käyttivät riskivakiointimallin kehittämisessä syviä neuroverkkoja. Tutkimus osoitti, että neuroverkkomalli on ennustuksissaan perinteisiä menetelmiä selvästi luotettavampi ja tarkempi. Näin se voi auttaa jakamaan rahaa palveluntuottajien todellisen tarpeen mukaan ja kannustaa niitä kustannustehokkuuteen. 

”Tällaisen mallin kehittäminen voi auttaa säästämään miljoonia euroja”, sanoo tohtorikoulutettava Yogesh Kumar.

Tutkijat opettivat mallia THL:n perusterveydenhuollon avohoidon hoitoilmoitusrekisteristä (Avohilmo) saatavilla tiedoilla, joissa on mukana jokaisen 65 vuotta täyttäneen suomalaisen terveydenhuollon avokäynnit. Data on pseudonymisoitu eli yksittäistä henkilöä ei voi tunnistaa sen perusteella. Avohilmoa hyödynnettiin nyt ensimmäistä kertaa koneoppimismallin kouluttamiseen.

Syvät neuroverkot eivät myöskään välttämättä vaadi valtavasti dataa tuottaakseen luotettavia tuloksia. Tutkimuksessa malli oli verrokkimenetelmiä tarkempi jopa silloin, kun se pystyi hyödyntämään vain noin kymmentä prosenttia kaikesta saatavilla olevasta datasta. Luotettavien tulosten saaminen suhteellisen pienellä tietomäärällä on tärkeää, sillä lääketieteessä suurten datamassojen saaminen tutkimuskäyttöön on vaikeampaa kuin monilla muilla aloilla.

”Tässä työssä kehitettyä mallia ei ole tarkoitus ottaa käyttöön sellaisenaan, vaan tavoitteena on integroida koneoppimismallien ominaisuuksia nykyisin käytettäviin malleihin. Näin voimme yhdistää eri menetelmien parhaat puolet”, Marttinen huomauttaa. 

”Tulevaisuudessa tavoitteena on hyödyntää näitä malleja päätöksenteon tukena, jolloin rahoitus saadaan jaettua asianmukaisemmin.”

Mallissa voidaan myös keskittyä esimerkiksi potilasryhmiin, joiden hoito on kallista tai terveyskeskuksiin tietyillä maantieteellisillä alueilla. Tutkimustulokset julkaistiin Proceeding of Machine Learning Research -julkaisusarjassa.

Lisätiedot

Yogesh Kumar (englanniksi)
Tohtorikoulutettava
Aalto-yliopisto, Suomen tekoälykeskus
[email protected]

Pekka Marttinen
Apulaisprofessori
Aalto-yliopisto, Suomen tekoälykeskus
Puh. 050-5124362
[email protected]

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lisää tästä aiheesta

SARS-COVID19
Tiedotteet Julkaistu:

Suomalaisstartupin keksintö vauhdittaa koronaviruksen testaamista

Aalto-yliopiston ja Helsingin yliopiston tutkijoiden perustama XFold Imaging Oy:n kehitti nanopinnoitetun lasilevyn, joka monikymmenkertaistaa mikroskoopin tarkkuuden. Sen ansiosta koronavirus voidaan tunnistaa näytteestä jopa päivää aiemmin nykyiseen verrattuna.
MRI Scanning photo Adolfo Vera Aalto University
Tiedotteet, Tutkimus ja taide Julkaistu:

Tutkijat kehittävät liikuteltavaa magneettikuvauslaitetta, joka mahtuu rekan sijasta pakettiautoon

Uusi teknologia voi auttaa esimerkiksi kriisialueiden terveydenhoidossa. Sille voi löytyä käyttökohteita myös hyvinvointialalla.
Aerosol particles
Tiedotteet Julkaistu:

Uudet mallinnukset vahvistavat: Sairaiden eristäminen ja etätyön suosiminen ovat avainasemassa koronan torjunnassa

Mitä pidempään ja tiiviimmin julkisessa sisätilassa oleskellaan, sitä suuremmaksi tartuntariski kasvaa, tutkijat korostavat. Työvuoroja limittämällä ja hyvällä ilmanvaihdolla voidaan parantaa työpaikkojen turvallisuutta.
Competition time
Tiedotteet Julkaistu:

Osallistu AaltoSDG-kilpailuun kesäkuussa

Osallistu AaltoSDG mobiilisovelluksen kestävää kehitystä edistäviin haasteisiin kesäkuussa ja voita leffalippuja.