Uutiset

Terveyspalvelujen käyttöä ennustava neuroverkkomalli voi säästää miljoonia

Suomessa kehitetty malli ennustaa iäkkäiden terveyspalveluiden käyttöä ja voi auttaa kohdentamaan rahoituksen tasapuolisemmin.

Illustration of neural networks in a hospital environment
Kuvituskuva: Matti Ahlgren / Aalto-yliopisto

Syvät neuroverkot ovat ihmisaivojen toimintaa jäljitteleviä koneoppimismenetelmiä. Nyt Aalto-yliopiston, Helsingin yliopiston ja Terveyden ja hyvinvoinnin laitoksen (THL) tutkijat ovat kehittäneet syvien neuroverkkojen avulla niin sanotun riskivakiointimallin. Se ennustaa, miten usein ikäihmiset käyvät vuoden aikana hoidettavina esimerkiksi terveyskeskuksessa tai sairaalassa.

Riskivakiointimallien tarkoituksena on ennustaa terveydenhuollon palveluiden käyttöä edellisten vuosien tietojen perusteella ja auttaa näin jakamaan rahoitusta terveydenhuollon palveluiden tarjoajille reilusti ja tehokkaasti. Malleja hyödynnetään monissa maissa, kuten Saksassa, Alankomaissa ja Yhdysvalloissa. Myös THL on kehittänyt malleja, joita voidaan käyttää Suomessa rahoituksen jakamiseen kunnille.

”Ilman mallia sellaiset terveyspalveluiden tuottajat, joiden potilaat sairastavat keskimääräistä enemmän, joutuisivat epäreiluun asemaan”, Aalto-yliopiston apulaisprofessori Pekka Marttinen sanoo. 

Nykyisin käytössä olevat mallit perustuvat perinteisiin tilastollisiin regressiomalleihin. Tämä oli ensimmäinen kerta, kun tutkijat käyttivät riskivakiointimallin kehittämisessä syviä neuroverkkoja. Tutkimus osoitti, että neuroverkkomalli on ennustuksissaan perinteisiä menetelmiä selvästi luotettavampi ja tarkempi. Näin se voi auttaa jakamaan rahaa palveluntuottajien todellisen tarpeen mukaan ja kannustaa niitä kustannustehokkuuteen. 

”Tällaisen mallin kehittäminen voi auttaa säästämään miljoonia euroja”, sanoo tohtorikoulutettava Yogesh Kumar.

Tutkijat opettivat mallia THL:n perusterveydenhuollon avohoidon hoitoilmoitusrekisteristä (Avohilmo) saatavilla tiedoilla, joissa on mukana jokaisen 65 vuotta täyttäneen suomalaisen terveydenhuollon avokäynnit. Data on pseudonymisoitu eli yksittäistä henkilöä ei voi tunnistaa sen perusteella. Avohilmoa hyödynnettiin nyt ensimmäistä kertaa koneoppimismallin kouluttamiseen.

Syvät neuroverkot eivät myöskään välttämättä vaadi valtavasti dataa tuottaakseen luotettavia tuloksia. Tutkimuksessa malli oli verrokkimenetelmiä tarkempi jopa silloin, kun se pystyi hyödyntämään vain noin kymmentä prosenttia kaikesta saatavilla olevasta datasta. Luotettavien tulosten saaminen suhteellisen pienellä tietomäärällä on tärkeää, sillä lääketieteessä suurten datamassojen saaminen tutkimuskäyttöön on vaikeampaa kuin monilla muilla aloilla.

”Tässä työssä kehitettyä mallia ei ole tarkoitus ottaa käyttöön sellaisenaan, vaan tavoitteena on integroida koneoppimismallien ominaisuuksia nykyisin käytettäviin malleihin. Näin voimme yhdistää eri menetelmien parhaat puolet”, Marttinen huomauttaa. 

”Tulevaisuudessa tavoitteena on hyödyntää näitä malleja päätöksenteon tukena, jolloin rahoitus saadaan jaettua asianmukaisemmin.”

Mallissa voidaan myös keskittyä esimerkiksi potilasryhmiin, joiden hoito on kallista tai terveyskeskuksiin tietyillä maantieteellisillä alueilla. Tutkimustulokset julkaistiin Proceeding of Machine Learning Research -julkaisusarjassa.

Lisätiedot

Yogesh Kumar (englanniksi)
Tohtorikoulutettava
Aalto-yliopisto, Suomen tekoälykeskus
yogesh.kumar@aalto.fi

Pekka Marttinen
Apulaisprofessori
Aalto-yliopisto, Suomen tekoälykeskus
Puh. 050-5124362
pekka.marttinen@aalto.fi

  • Päivitetty:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Ihmisiä työskentelemässä pöydän ääressä, kannettavat tietokoneet, muistilaput ja kahvikupit. Yksi henkilö kirjoittaa muistiinpanoja.
Yhteistyö, Opinnot, Yliopisto Julkaistu:

Ilmoittaudu Unite! Training Programme on Sustainability for Prospective Leaders -koulutusohjelmaan

Kansainvälinen verkkokoulutus opiskelijoille, opetushenkilöstölle ja johtajille, jotka haluavat edistää kestävän kehityksen aloitteita omissa organisaatioissaan. Ilmoittaudu viimeistään 13. helmikuuta 2026.
Kolme miestä seisoo sisätiloissa, pukeutuneina rentoihin vaatteisiin. Taustalla on näyttö ja toimistokalusteita.
Nimitykset Julkaistu:

Nikolai Ponomarev, Hossein Baniasadi ja Jorge Velasco aloittivat data-agentteina Kemian tekniikan korkeakoulussa

Data-agentit tukevat koulunsa ja laitostensa tutkijoita tutkimusdatanhallintaan liittyvissä kysymyksissä.
Avoimen tieteen palkinto 2025
Palkinnot ja tunnustukset Julkaistu:

Kansallisen avoimen tieteen vaikuttajapalkinnon sai vuonna 2025 Anne Sunikka

Kansallisen avoimen tieteen vaikuttajapalkinnon sai vuonna 2025 tutkimuspalveluiden OSA-tiimin tiiminvetäjä Anne Sunikka
Kolme ihmistä puistossa, taustalla vuoria. Yksi istuu penkillä, kaksi seisoo maisemaa katsellen.
Yhteistyö, Opinnot, Yliopisto Julkaistu:

Ehdota sisältöä Unite! Widening -koulutussarjaan tutkijoille

Unite!Widening kutsuu Aallon henkilöstöä, opettajia ja tutkijoita mukaan suunnittelemaan uutta, käytännönläheistä koulutussarjaa tutkijoille. Jaa osaamistasi ja rakenna yhteistyötä yliopistojen välillä. Tue tutkijoita kaikissa uravaiheissa. Hakuaika päättyy 2.2.2026.