Uutiset

Kasvien mikrojuurten tutkimuksella etsitään keinoja runsaampiin ja kestävämpiin satoihin

Merkittävän rahoituksen saaneesta tutkimuksesta toivotaan keinoja ilmastonmuutoksen vastaiseen taisteluun muun muassa eroosion ehkäisemisessä ja ruokaturvan parantamisessa.
Professor Matilda Backholm facing the camera
Apulaisprofessori Matilda Backholm. Kuva: MIkko Raskinen / Aalto University.

Aalto-yliopiston teknillisen fysiikan laitoksen apulaisprofessori Matilda Backholm on saanut 496 000 euroa Jane ja Aatos Erkon säätiöltä sekä 150 000 euroa Tiedeakatemialta mikroskooppisten kasvijuurien tutkimiseen. Kasvien mikrojuurien fysiikan paremman ymmärtämisen uskotaan auttavan esimerkiksi viljelijöitä kestävämpien ja runsaampien satojen istuttamisessa ilmastonmuutoksen aiheuttamien muutosten keskellä.

Tutkimuksen ytimessä on Backholmin ainutlaatuisen mikropipettitekniikan jatkokehittäminen. Laitteen avulla voi mitata fyysisiä voimia äärimmäisen tarkasti.

Biomekaaniset voimat saavat alkunsa soluissa

Äärimmäisen pienten kasvijuurien fysiikka on monimutkaista ja toistaiseksi tuntematonta. Mikroskooppiset juuret, kuten siemenistä kasvavat erittäin nuoret juuret sekä juurikarvat auttavat kasvia kiinnittymään maaperään. Jos nämä juuret ovat liian pehmeitä, ne eivät pysty tunkeutumaan kuivaan ja tiiviiksi pakkautuneeseen maaperään, liian jäykät juuret taas eivät pysty kasvamaan esteiden ympäri, ja liian heikot puolestaan eivät kestä nostamista. “Kasvijuurien mekaaniset ominaisuudet muodostuvat yksittäisten solujen tasolla, ja ne ovat vastuussa suuressa osasta kasvien fysiikkaa. Tällä hetkellä ei kuitenkaan tiedetä, miten tämä tapahtuu. Emme myöskään tiedä miten monisoluiset elävät materiaalit, kuten kasvit sopeutuvat ulkoisiin fyysisiin stressitekijöihin solutasolla,” Backholm sanoo.

Jane ja Aatos Erkon säätiöltä saamallaan rahoituksella Backholm pyrkii vastaamaan näihin kysymyksiin.

Tiedeakatemian rahoituksella Backholmin vetämä Living Matter -tutkimusryhmä selvittää kasvien juurten fysiikkaan liittyviä muita avoimia kysymyksiä, esimerkiksi miten mikrojuuret aistivat painovoimaa. Gravitropismi, eli maan vetovoiman aiheuttama kasvu, on kasveille tärkeä keino ankkuroitua syvemmälle maaperään ja hankkia vettä, mutta sen tarkempi mekaniikka on yhä arvoitus.

Mittaamista ja mallintamista

Fysiikkaa ja biologiaa yhdistävässä tutkimuksessa Backholm aikoo myös jatkokehittää  ainutlaatuista mikropipettitekniikkaansa, ja luoda uudenlaisen työkalun juurien mekaanisten ominaisuuksien mittaamiseen. Nanonewtoneiden mittaluokassa tapahtuva tutkimus keskittyy yleisesti biologian tutkimuksessa käytettyyn lituruohoon (Arabidopsis thaliana).  Tutkimukseen kuuluu myös juurien mekaniikan ja kasvudynamiikan analyyttista mallintamista.

“Tuloksena on mikroskooppisten kasvijuurien fysiikan syvempi ymmärtäminen, joka auttaa viljelijöitä räätälöimään kasvinsa paremmin eri maaperiin ja ilmastoihin. Se auttaa myös eroosion ehkäisemissä ja ruokatehokkuuden parantamisessa. Molemmat ovat tärkeitä keinoja ilmastonmuutoksen vastaisessa taistelussa.”

Tutkimukseen kuuluu myös yritysyhteistö suomalaisen Boreal Plant Breeding Oy:n kanssa. Yhteistyö tutkii tärkeiden viljelykasvien kuten kauran ja vehnän mekaanisia ominaisuuksia, tavoitteenaan tulevaisuuden satoja parantavan datan kerääminen.

Nelivuotinen projekti alkaa tänä vuonna, ja siihen osallistuu Backholmin lisäksi hänen johtamansa Living Matter -tutkimusryhmä teknillisen fysiikan laitokselta.

Lisätietoja:

Group of eleven people standing on outdoor steps with modern buildings in the background, under a clear blue sky.

Living, Fluid, & Soft Matter

We develop new experimental and analytical tools to probe the dynamics and flow in mesoscale living, fluid, and soft systems. We perform curiosity-driven research to make discoveries in soft matter physics and at the interface between physics and biology.

Department of Applied Physics
  • Päivitetty:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Henkilö puhuu älykelloon, jossa on hopeinen verkkoranneke ja näytöllä aaltomuoto.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Äänesi paljastaa enemmän kuin uskot – tutkijat kehittävät keinoja suojata puheeseen kätkeytyvää tietoa

Puheteknologiat yleistyvät vauhdilla, ja samalla kasvaa riski siitä, että ääni paljastaa arkaluonteista tietoa terveydestä, taustoista tai mielipiteistä. Aalto-yliopiston tutkijat kehittävät keinoja mitata ja rajoittaa sitä, mitä kaikkea puheesta voidaan päätellä.
Kolme ihmistä istuu bussipysäkillä, takanaan karttoja ja kylttejä. Yhdellä on reppu maassa.
Tutkimus ja taide Julkaistu:

Aallon vuosi 2025: Kvanttihyppyjä, luovia loikkia ja ratkaisuja parempaan elämään

Kasvua, teknologiaa ja teollisuuden uudistumista, ihmislähtöisiä ratkaisuja, terveys ja arjen hyvinvointi sekä hauskaa arkea ja toimivia yhteisöjä.
Jaettu kuva: vasemmalla valkoinen rekka tiellä kasvien kanssa; oikealla digitaalisia linjoja ja osittainen kasvot. Teksti: unite! #UniteSeedFund
Palkinnot ja tunnustukset, Yhteistyö Julkaistu:

Merkittävä EU-rahoitus kahdelle Unite! Seed Fund -hankkeelle, joissa Aalto on mukana

Kaksi arvostettua EU-rahoitusta on myönnetty hankkeille, joita on alun perin tuettu Unite! Seed Fund -rahoituksella. Aalto-yliopisto on mukana molemmissa hankkeissa.
arotor adjustable stiffness test setup
Yhteistyö, Tutkimus ja taide Julkaistu:

Miljoonarahoitus uuden sukupolven koneteknologian kehittämiseen – tavoitteena tuottavuusloikka useilla vientialoilla

BEST-hankkeessa kehitetään uudenlaisia tiiviste-, laakerointi- ja vaimennusteknologioita useiden teollisuudenalojen käyttöön.