Uutiset

Hiukkasten kvanttiominaisuudet onnistuttiin osoittamaan kokeellisesti

Tutkimuksesta voi olla hyötyä kvanttitietokoneiden tutkimuksessa.
Cover image of science magazine
Kannen kuvitus: C. Bickel/Science.

Tuore Science-lehdessä julkaistu tutkimus tarkastelee anioneiksi kutsuttuja hiukkasia, jotka ovat kiinnostavia erityisesti kvanttitietokoneiden ja muiden kvanttiominaisuuksia hyödyntävien laitteiden näkökulmasta. Tutkimuksessa mitattiin ensimmäistä kertaa suoraan anionien kvanttiominaisuuksia. Työryhmää johtaa professori Gwendal Féve Ecole Normale Supérieure –yliopistosta ja tutkimus toteutettiin yhteistyössä Aalto-yliopiston kanssa.

Kolmiulotteisessa maailmassamme on vain kahdenlaisia fysiikassa tunnettuja hiukkasia: toisiaan hylkiviä fermioneja ja toisiaan puoleensa vetäviä bosoneja. Yksi yleisimmin tunnettu fermioni on sähköä kuljettava elektroni, bosoneista tunnetuin on valoa kuljettava fotoni. Kaksiulotteisessa maailmassa tunnetaan kuitenkin vielä anioneja, hiukkasia, jotka eivät käyttäydy fermionien eivätkä bosonien tavoin. Anionien ominaisuudet poikkeavat muiden tunnettujen partikkelien kvanttiominaisuuksista.

Anioneja on tutkittu 1970-luvulta lähtien, mutta hiukkasten kvanttiominaisuuksia ei ole tätä ennen pystytty kokeellisesti osoittamaan. Tutkijat ovat tähän saakka yrittäneet luoda ja mitata anioneja sulkemalla niitä nanokokoisiin säiliöihin ja mittaamalla niiden liikkumista, mutta näiden tutkimusten tulokset ovat toistaiseksi olleet kiistanalaisia.

Uusi tutkimus perustuu hyvin pieneen hiukkastörmäyttimeen.

”Hiukkastörmäyttimen halkaisija on ihmisen hiuksen kokoluokkaa. Törmäyttimessä hajotimme anioneita paljastaaksemme niiden todellisen kvanttiluonteen”, sanoo tohtorikoulutettava Hugo Bartolomei Ecole Normale Supérieure –yliopistosta.

”Kokeemme toimi kuin nelisuuntainen tienristeys, jossa kaksi tietä johti sisään ja kaksi ulos. Jos risteykseen lähetetään fermioneja eri sisäänmenotietä pitkin, ne kohtaavat risteyksessä ja lähtevät pois eri ulosmenoteitä pitkin. Jos risteykseen lähetetään vastaavasti bosoneja, ne kohtaavat risteyksessä ja lähtevät pois samaa tietä. Jos taas risteykseen lähetetään anioneja, ne käyttäytyvät aivan eri tavalla. Joskus ne yhdistyvät ja joskus ne lähtevät eri suuntiin. Yleensä ne kasaantuvat yhteen kuten bosonit, mutta niiden täsmällinen yhteenkuuluvuuden aste vaihtelee jaksollisesti niiden erityisen aaltoluonteen mukaisesti”, Aalto-yliopiston tutkija Manohar Kumar kertoo.

Tuore Science-lehdessä julkaistu tutkimus tarkastelee anioneiksi kutsuttuja hiukkasia, jotka ovat kiinnostavia erityisesti kvanttitietokoneiden ja muiden kvanttiominaisuuksia hyödyntävien laitteiden näkökulmasta. Tutkimuksessa mitattiin ensimmäistä kertaa suoraan anionien kvanttiominaisuuksia. Työryhmää johtaa professori Gwendal Féve Ecole Normale Supérieure –yliopistosta ja tutkimus toteutettiin yhteistyössä Aalto-yliopiston kanssa.

Kolmiulotteisessa maailmassamme on vain kahdenlaisia fysiikassa tunnettuja hiukkasia: toisiaan hylkiviä fermioneja ja toisiaan puoleensa vetäviä bosoneja. Yksi yleisimmin tunnettu fermioni on sähköä kuljettava elektroni, bosoneista tunnetuin on valoa kuljettava fotoni. Kaksiulotteisessa maailmassa tunnetaan kuitenkin vielä anioneja, hiukkasia, jotka eivät käyttäydy fermionien eivätkä bosonien tavoin. Anionien ominaisuudet poikkeavat muiden tunnettujen partikkelien kvanttiominaisuuksista.

Anioneja on tutkittu 1970-luvulta lähtien, mutta hiukkasten kvanttiominaisuuksia ei ole tätä ennen pystytty kokeellisesti osoittamaan. Tutkijat ovat tähän saakka yrittäneet luoda ja mitata anioneja sulkemalla niitä nanokokoisiin säiliöihin ja mittaamalla niiden liikkumista, mutta näiden tutkimusten tulokset ovat toistaiseksi olleet kiistanalaisia.

Uusi tutkimus perustuu hyvin pieneen hiukkastörmäyttimeen.

”Hiukkastörmäyttimen halkaisija on ihmisen hiuksen kokoluokkaa. Törmäyttimessä hajotimme anioneita paljastaaksemme niiden todellisen kvanttiluonteen”, sanoo tohtorikoulutettava Hugo Bartolomei Ecole Normale Supérieure –yliopistosta.

”Kokeemme toimi kuin nelisuuntainen tienristeys, jossa kaksi tietä johti sisään ja kaksi ulos. Jos risteykseen lähetetään fermioneja eri sisäänmenotietä pitkin, ne kohtaavat risteyksessä ja lähtevät pois eri ulosmenoteitä pitkin. Jos risteykseen lähetetään vastaavasti bosoneja, ne kohtaavat risteyksessä ja lähtevät pois samaa tietä. Jos taas risteykseen lähetetään anioneja, ne käyttäytyvät aivan eri tavalla. Joskus ne yhdistyvät ja joskus ne lähtevät eri suuntiin. Yleensä ne kasaantuvat yhteen kuten bosonit, mutta niiden täsmällinen yhteenkuuluvuuden aste vaihtelee jaksollisesti niiden erityisen aaltoluonteen mukaisesti”, Aalto-yliopiston tutkija Manohar Kumar kertoo.

Sample stage showing a close up of how the sample stage works
Yksi tutkimuksessa käytetyistä näytteistä. Kuva: Manohar Kumar.

Tutkimuksessa keskityttiin niin sanottuihin abelialaisiin anioneihin, joita tarkasteltiin kokeellisesti. Teoreettisesti tunnetaan myös eksoottisempi hiukkastyyppi, niin kutsuttu ei-abelialainen anioni. Yleisesti nämä ei-abelialaiset hiukkaset käyttäytyvät matemaattisesti erityisellä tavalla, mikä tekee niistä houkuttelevia tutkimuskohteita kvanttiteknologian näkökulmasta.

”Tutkimuksessamme esitellään menetelmä, jolla abelialaisia anioneja voidaan vaihtaa keskenään. Jos myös ei-abelialaisia anioneja onnistutaan vaihtamaan keskenään, niistä voidaan muodostaa kvanttibitti eli kubitti. Tämä ominaisuus on keskeinen topologisessa kvanttilaskennassa ja kvanttitietokoneiden tutkimuksessa”, Manohar Kumar kertoo.

Tohtori Manohar Kumar tutkii nyt grafeenia ja kaksiulotteisia materiaaleja professori Pertti Hakosen tutkimusryhmässä Aalto-yliopiston teknillisen fysiikan laitoksella.

”Grafeeni voi mahdollistaa ei-abelialaisten anionien luomisen ja kokeellisen tutkimisen, joten jatkan nyt kokeen kehittämistä grafeenissa ja pyrin mittaamaan näiden uusien hiukkasten ominaisuuksia”, sanoo Manohar Kumar.

Aalto-yliopiston tutkimusryhmä on osa kansallista Kvanttiteknologian huippuyksikköä. Se hyödyntää tutkimuksessaan kansallista OtaNano-tutkimusinfrastruktuuria, jonka Kylmälaboratorio on myös osa eurooppalaista ultramatalien lämpötilojen EMP-tutkimusinfrastruktuuria.

Lisätietoja (englanniksi):

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lisää tästä aiheesta

In Tension 4 Photo by_ Eeva Suorlahti
Tutkimus ja taide, Opinnot Julkaistu:

Near futures -verkkonäyttely tarjoaa näkymän tulevaisuuden ratkaisuihin

Lukuvuonna 2019–2020 valmistuneiden maisteriopiskelijoiden yhteiskunnallisesti kiinnostavia töitä on nyt nähtävillä verkkonäyttelyssä.
The photo shows the School of Business main staircase. The photo was taken by Unto Rautio.
Tutkimus ja taide Julkaistu:

Apulaisprofessori Ewald Kiblerin tutkimusryhmälle Suomen Akatemian erityisrahoitus

Ryhmä aikoo tutkia koronakriisin vaikutuksia yli 50-vuotiaisiin yrittäjiin, joille kriisi aiheuttaa monia riskejä.
Economicum-rakennus vaahterapuun katveessa
Yhteistyö, Tutkimus ja taide Julkaistu:

Helsinki GSE:n tilannehuoneen seitsemäs raportti: suurin pudotus huhtikuun palkkasummassa Kouvolassa, Vaasassa ja Helsingissä

Kaikille avoin webinaari raportin sisällöistä pidetään Zoomilla torstaina 4.6.2020 klo 8.00.
A board room
Tutkimus ja taide Julkaistu:

Mitä voi tapahtua, jos yhtiöiden hallitukset osallistuvat strategiseen päätöksentekoon?

Pardeep Maheshwaree ehdottaa tutkimuksessaan yritysten hallinnon kehittämistä.