Ainutlaatuinen menetelmä mahdollistaa elävien solujen ja mikro-organismien voimien mittaamisen

Tutkijat ovat kehittäneet mukautumiskykyisen menetelmän erilaisten mikrokokoisten organismien synnyttämien voimien mittaamiseen. Tutkimusmenetelmän periaatteet on julkaistu arvostetussa kansainvälisessä Nature Protocols -lehdessä.
Elävien solujen ja mikro-organismien synnyttämien voimien mittaamiseen tarkoitetun mikropipettivoima-anturi -menetelmän kehittämistä kuvaillaan Aalto-yliopiston tutkijatohtorin Matilda Backholmin ja Max Planck–instituutin tutkimusryhmän johtajan, tutkijatohtori Oliver Bäumchenin yhteisessä tutkimustyössä.
”Mikropipettivoima-anturin toimintaperiaate on hyvin yksinkertainen: kalibroidun mikropipetin poikkeamaa optisesti tarkastelemalla voidaan pipettiin kohdistuvat voimat mitata suoraan”, Matilda Backholm sanoo.
Elävän solun tai mikro-organismin synnyttämät voimat ovat hyvin pieniä, alle muutaman nanonewtonin. Nämä voimat ovat kuitenkin riittävät, jotta biologiset solut voivat tarttua johonkin pintaan tai mikrobit voivat liikkua kohti ravintoaineita.
”Mikropipetin avulla voimme napata elävän solun samalla tavalla kuin in vitro -hedelmöityksessä ja tutkia mekaanisia voimia mittaamalla pipetin poikkeaman. Hyödynnämme mittauksessa fysiikan standardimittaustekniikan eli atomivoimamikroskoopin perustana olevia mittausperiaatteita”, kertoo Oliver Bäumchen.
Mikropipetti on ontto lasineula, jonka paksuus vastaa korkeintaan ihmisen hiuksen läpimittaa. Menetelmän merkittävimpiä etuja on, että sitä voidaan soveltaa monenlaisiin biologisiin järjestelmiin yksittäisistä soluista aina millimetrin kokoisiin mikro-organismeihin. Matilda Backholm mainitsee myös toisen merkittävän edun.
”Huipputason mikroskoopilla voimme tarkastella mikro-organismin muotoa ja liikettä korkealla optisella resoluutiolla ja mitata samalla voimia.”
Biologisten solujen on elääkseen ja jakaantuakseen kyettävä sopeutumaan ympäristönsä olosuhteisiin. Solut saattavat kiinnittyä pintoihin ja muihin soluihin ja muodostaa biologisen kalvon, joka suojaa soluyhteisöä ulkoiselta hyökkäykseltä. Monet mikro-organismit pystyvät liikuttamaan itseään aktiivisesti mönkimällä pintaa pitkin tai uimalla esimerkiksi nesteessä kohti ravinnonlähdettä.
Solu tai mikro-organismi säilyy mittauksen aikana rikkomattomana ja elävänä, minkä ansiosta pystytään testaamaan solun tai mikro-organismin reaktiota lääkeaineisiin, ravintoaineisiin, lämpötilaan ja muihin ympäristötekijöihin. Matilda Backholm mainitsee, että menetelmän avulla voidaan edistää biolääketieteellisiä ja bioteknologisia sovelluksia.
”Mikropipettivoima-anturitekniikka voi olla avuksi, kun pyritään tunnistamaan lääkkeitä, joilla voidaan torjua infektiosairauksia ja estää biologisten kalvojen muodostuminen lääketieteellisiin implantteihin.”
Lisätietoa:
Matilda Backholm
Tutkijatohtori
Teknillisen fysiikan laitos, Aalto-yliopisto
[email protected]
www.backholm.wordpress.com
Video: Esimerkki mikropipettivoima-anturimittauksesta uivalla mikro-organismilla. Kuvaaja: Matilda Backholm / Aalto -yliopisto. Videon muut kuvat ja data: Rafael Schuman.
Lue lisää uutisia

Suomen akatemia palkitsee Ville Vuorisen COVID-19 taudin leviämistä koskevasta tutkimuksesta
Ilma- ja nestevirtausten fysiikkaa tutkiva Ville Vuorinen palkitaan poikkeuksellisesta tieteellisestä rohkeudesta ja luovuudesta sekä toiminnasta tieteen yhteiskunnallisen vaikuttavuuden edistämiseksi.
Näkymiä avoimeen dataan: Aalto Research Data Uncovered
Marika Tervahartiala ja Kamyar Hasanzadeh astuivat lavalle kertomaan tutkimuksestaan geograafisen ja visuaalisen datan parissa avoimen datan näkökulmasta.
Kvanttitieteilijät onnistuivat mittaamaan mikroaaltosäteilyn tehon ennennäkemättömällä tarkkuudella
Tutkijat uskovat, että uusi laite voi mullistaa mikroaaltosäteilyn mittaamisen ja on huima harppaus kvanttiteknologialle.