Uutiset

Ainutlaatuinen menetelmä mahdollistaa elävien solujen ja mikro-organismien voimien mittaamisen

Menetelmän avulla voidaan löytää keinoja, joilla torjua esimerkiksi infektiosairauksia tai estää biologisten kalvojen muodostuminen lääketieteellisiin implantteihin.
A nematode worm held in a micropipette
Mikropipettivoima-anturi optisen mikroskoopin alapuolella. Kuva: Oliver Bäumchen / MPIDS

Tutkijat ovat kehittäneet mukautumiskykyisen menetelmän erilaisten mikrokokoisten organismien synnyttämien voimien mittaamiseen. Tutkimusmenetelmän periaatteet on julkaistu arvostetussa kansainvälisessä Nature Protocols -lehdessä.

Elävien solujen ja mikro-organismien synnyttämien voimien mittaamiseen tarkoitetun mikropipettivoima-anturi -menetelmän kehittämistä kuvaillaan Aalto-yliopiston tutkijatohtorin Matilda Backholmin ja Max Planck–instituutin tutkimusryhmän johtajan, tutkijatohtori Oliver Bäumchenin yhteisessä tutkimustyössä.

”Mikropipettivoima-anturin toimintaperiaate on hyvin yksinkertainen: kalibroidun mikropipetin poikkeamaa optisesti tarkastelemalla voidaan pipettiin kohdistuvat voimat mitata suoraan”, Matilda Backholm sanoo.

Elävän solun tai mikro-organismin synnyttämät voimat ovat hyvin pieniä, alle muutaman nanonewtonin. Nämä voimat ovat kuitenkin riittävät, jotta biologiset solut voivat tarttua johonkin pintaan tai mikrobit voivat liikkua kohti ravintoaineita.

”Mikropipetin avulla voimme napata elävän solun samalla tavalla kuin in vitro -hedelmöityksessä ja tutkia mekaanisia voimia mittaamalla pipetin poikkeaman. Hyödynnämme mittauksessa fysiikan standardimittaustekniikan eli atomivoimamikroskoopin perustana olevia mittausperiaatteita”, kertoo Oliver Bäumchen.

Mikropipetti on ontto lasineula, jonka paksuus vastaa korkeintaan ihmisen hiuksen läpimittaa. Menetelmän merkittävimpiä etuja on, että sitä voidaan soveltaa monenlaisiin biologisiin järjestelmiin yksittäisistä soluista aina millimetrin kokoisiin mikro-organismeihin. Matilda Backholm mainitsee myös toisen merkittävän edun.

”Huipputason mikroskoopilla voimme tarkastella mikro-organismin muotoa ja liikettä korkealla optisella resoluutiolla ja mitata samalla voimia.”

Biologisten solujen on elääkseen ja jakaantuakseen kyettävä sopeutumaan ympäristönsä olosuhteisiin. Solut saattavat kiinnittyä pintoihin ja muihin soluihin ja muodostaa biologisen kalvon, joka suojaa soluyhteisöä ulkoiselta hyökkäykseltä. Monet mikro-organismit pystyvät liikuttamaan itseään aktiivisesti mönkimällä pintaa pitkin tai uimalla esimerkiksi nesteessä kohti ravinnonlähdettä.

Solu tai mikro-organismi säilyy mittauksen aikana rikkomattomana ja elävänä, minkä ansiosta pystytään testaamaan solun tai mikro-organismin reaktiota lääkeaineisiin, ravintoaineisiin, lämpötilaan ja muihin ympäristötekijöihin. Matilda Backholm mainitsee, että menetelmän avulla voidaan edistää biolääketieteellisiä ja bioteknologisia sovelluksia.

”Mikropipettivoima-anturitekniikka voi olla avuksi, kun pyritään tunnistamaan lääkkeitä, joilla voidaan torjua infektiosairauksia ja estää biologisten kalvojen muodostuminen lääketieteellisiin implantteihin.”

Lisätietoa:

Artikkeli: Micropipette force sensors for in vivo force measurements on single cells and multicellular microorganisms

Matilda Backholm
Tutkijatohtori
Teknillisen fysiikan laitos, Aalto-yliopisto
[email protected]                             
www.backholm.wordpress.com

Video: Esimerkki mikropipettivoima-anturimittauksesta uivalla mikro-organismilla. Kuvaaja: Matilda Backholm / Aalto -yliopisto. Videon muut kuvat ja data: Rafael Schuman.

Tietoa eläinten käyttämisestä tutkimuksessa
  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Laskentatoimen tutkijoita. Kuva: Roope Kiviranta
Palkitut, Tutkimus ja taide Julkaistu:

Laskentatoimen tutkijoiden artikkeli palkittiin parhaana Aasian ja Tyynenmeren alueen konferenssissa

Artikkeli voitti parhaan tutkimuspaperin palkinnon tilintarkastuksen alalla.
A person in a VR experience
Yhteistyö, Tutkimus ja taide Julkaistu:

European Media and Immersion Lab (EMIL) -projekti kutsuu XR-kehittäjät yhteistyöhön

Aalto-yliopiston koordinoima EMIL-projekti aloittaa syyskuussa 2022.
A piece of wood panel containing eco glue
Tutkimus ja taide Julkaistu:
Helsingin Sanomien logo
Tutkimus ja taide Julkaistu:

Tilaus Helsingin Sanomien verkkoversioon (HS.fi) on päättynyt

Tilaus Helsingin Sanomien verkkoversioon (HS.fi) on päättynyt.