Uutiset

Suomalaistutkijat löysivät ratkaisun kvanttitietokoneen jäähdytykseen

Kvanttifyysikko Mikko Möttönen on ryhmineen keksinyt kvanttipiirijäähdyttimen, joka vähentää kvanttilaskennan virheitä.
Valokuva senttimetrin kokoisesta piisirusta, jossa on rinnakkain kaksi suprajohtavaa värähtelijää ja niihin kytketyt kvanttipiirijäähdyttimet. Kuva: Kuan Yen Tan

Maailmanlaajuinen kilpajuoksu kohti toimivaa kvanttitietokonetta kiihtyy. Kvanttitietokoneella pystymme tulevaisuudessa ratkomaan muuten mahdottomia ongelmia ja kehittämään esimerkiksi monimutkaisia lääkkeitä, lannoitteita tai vaikka tekoälyä.

Tiedelehti Nature Communicationsissa tänään julkaistu tutkimustulos kertoo, miten kvanttilaskennassa voidaan poistaa haitallisia virheitä. Tämä on uusi käänne kohti toimivaa kvanttitietokonetta.

Kvanttitietokonekin tarvitsee jäähdyttimen

Kvanttitietokoneet poikkeavat käytössämme olevista koneista niin, että ne laskevat tavallisten bittien sijaan kvanttibiteillä eli kubiteilla. Kun läppärissäsi rouskuttavat bitit ovat nollia tai ykkösiä, kubitti voi olla samanaikaisesti molemmissa tiloissa. Kubittien muuntautumiskyky on monimutkaisten laskujen edellytys, mutta se tekee niistä myös herkkiä ulkoisille häiriöille.

Kuten tavalliset sähkölaitteet, myös kvanttitietokone tarvitsee mekanismin viilentymiseen. Yhdessä laskussa saatetaan tulevaisuudessa käyttää tuhansia tai jopa miljoonia loogisia kubitteja, ja jotta laskutoimituksesta saadaan oikea tulos, pitää jokainen niistä nollata laskun alussa. Jos kubitit ovat liian kuumia, nollaus ei onnistu, koska ne hyppivät liikaa eri tilojen välillä. Tähän Mikko Möttönen ryhmineen on kehittänyt ratkaisun.

Jäähdytin tekee kvanttilaitteista luotettavampia

Aalto-yliopiston tutkijaryhmän kehittämä nanokokoinen jäähdytin ratkaisee jättimäisen haasteen: sen avulla lähes kaikki sähköiset kvanttilaitteet voidaan alustaa nopeasti. Näin laitteista tulee tehokkaampia ja luotettavampia.

“Olen työstänyt tätä laitetta viisi vuotta ja vihdoinkin se toimii!”, riemuitsee Möttösen ryhmässä tutkijatohtorina työskentelevä Kuan Yen Tan.

Tan jäähdytti kubitin kaltaista värähtelijää hyödyntämällä yksittäisten elektronien tunneloitumista vain kahden nanometrin paksuisen eristekerroksen läpi. Hän antoi elektronille ulkoisella jännitelähteellä hieman liian vähän energiaa suoraa tunneloitumista varten. Siksi elektroni kaappaa tunneloitumiseen tarvitsemansa lisäenergian läheiseltä kvanttilaitteelta ja siksi laite viilenee. Jäähdytyksen voi kytkeä pois päältä säätämällä ulkoisen jännitteen nollaan. Silloin edes kvanttilaitteen luovutettavissa oleva energia ei riitä puskemaan elektronia eristeen läpi.

“Meidän laitteella saadaan kvantit kuriin”, Mikko Möttönen kiteyttää.

Seuraavaksi tutkijat aikovat jäähdyttää ihan oikeita kvanttibittejä, laskea jäähdyttimellä saavutettavaa minimilämpötilaa ja rakentaa sen on/off-kytkimestä supernopean.

Taiteellinen näkemys kvanttipiirijäähdyttimestä toiminnassaan. Kun elektroni tunneloituu, se samalla kaappaa fotonin kvanttilaitteelta, mikä johtaa laitteen jäähtymiseen. Kuva: Heikka Valja

Katso video, jossa kvanttifyysikot selittävät jäähdyttimen toimintaperiaatteen kahdessa minuutissa pulkan ja avannon avulla.

Tutkimusartikkeli:
Kuan Yen Tan, Matti Partanen, Russell E. Lake, Joonas Govenius, Shumpei Masuda ja Mikko Möttönen. Quantum-Circuit Refrigerator. Nature Communications 8, DOI:10.1038/ncomms15189
Linkki artikkeliin: http://dx.doi.org/10.1038/ncomms15189

Kiitokset

Tutkijat kiittävät rahoituksesta Euroopan tutkimusneuvostoa (ERC) Starting Independent Researcher Grant -apurahasta SINGLEOUT (278117) ja Consolidator Grant -apurahasta QUESS (681311), Suomen Akatemiaa COMP-huippuyksikkörahoituksesta (251748 ja 284621) sekä apurahoista (135794, 272806, 265675, 276528, 286215 ja 305306), Emil Aaltosen säätiötä, Jenny ja Antti Wihurin rahastoa ja Suomen kulttuurirahastoa. Tutkijat kiittävät myös Aalto-yliopiston OtaNano – Micronovaa nanovalmistuksen tutkimusinfrastruktuurista.

Lisätietoja:

Mikko Möttönen, TkT, Dos.
Aalto-yliopisto
Teknillisen fysiikan laitos
QCD Labs
http://physics.aalto.fi/qcd/
[email protected]
p. +358 50 594 0950
Twitter: @mpmotton
Blogi: https://blogs.aalto.fi/quantum/

Kuan Yen Tan, FT
Aalto-yliopisto
Teknillisen fysiikan laitos
QCD Labs
http://physics.aalto.fi/qcd/
[email protected]
p. +358 50 344 2896

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Suvi Hirvonen-Ere
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Väitöstutkimus selvitti, miksi kestävän liiketoiminnan läpilyönti yritysmaailmassa on ollut hidasta, miten sitä voisi kiihdyttää – ja samalla tehdä tuottoisaa tulosta

Kaupallinen ja sopimusjohtaminen on yritysjohdon strateginen työväline, jota käyttäen yritys voi saavuttaa sekä ympäristöllisesti kestävät että taloudelliset tulostavoitteensa, ilmenee tällä viikolla tarkastettavasta väitöskirjasta.
Viima-rakennuksen pääsisäänkäynti
Tutkimus ja taide Julkaistu:

Tulevaisuuden rakennukset ovat sekä energian tuottajia että käyttäjiä

Aalto-yliopistossa kehitetty uusi innovatiivinen rakenne parantaa levylämmönvaihtimen tehokkuutta jopa 20 prosenttia. Lämpöpumppuun kytkettynä sillä on lukuisia käyttökohteita aina kotien käyttöveden lämmityksestä maalämpölaitoksiin ja rakennusten ilmanvaihtoon.
Construction worker looking straight to camera
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Jopa 80 prosenttia rakennustyömailla tehtävästä työstä on tehotonta – jatkuvat keskeytykset vaikuttavat myös turvallisuuteen

Valtaosa rakennustyömailla tehtävistä töistä ei suoraan vaikuta työn varsinaiseen edistymiseen. Tuore väitöstutkimus löysi kuitenkin helpon keinon parantaa rakentamisen tuottavuutta ja samalla myös hyvinvointia: työntekijöiden toiminnan seuranta.
Ylös vievät betoniset portaat, vasemmalla puolelle seinällä taideteos
Kampus, Tutkimus ja taide, Yliopisto Julkaistu: