Uutiset

Ikuinen liike on mahdollista – Aalto-yliopiston Kylmälaboratoriossa havainnoitiin kahden fysiikan lait haastavan aikakiteen välistä vuorovaikutusta

Aikakiteet ovat aineen olomuoto, jossa hiukkaset liikkuvat ikuisesti toistuvassa rytmissä ilman ulkopuolista energiaa. Tutkijat onnistuivat luomaan Aalto-yliopiston Kylmälaboratoriossa kaksi aikakidettä ja tarkkailemaan niiden välistä vuorovaikutusta. Tulevaisuudessa aikakiteitä voi hyödyntää erilaisissa laitteissa, kuten kvanttitietokoneiden muistina.
Kuvaa laitteittosta Aalto-yliopsiton Kylmälaboratoriossa.
Tutkijat jäähdyttivät kokeessa helium-3-nestettä kymmenestuhannesosan päähän absoluuttisesta nollapisteestä ja sen jälkeen he loivat kaksi aikakidettä nesteen sisällä. Kuva: Mikko Raskinen, Aalto-yliopisto.

Nobel-palkittu fyysikko ja Aalto-yliopiston vieraana kvanttiyhteisö InstituteQ:n tapahtumassa vastikään puhunut professori Frank Wilczek teoretisoi aikakiteiden olemassaolon vuonna 2012. Kokeellinen varmistus niiden olemassaololle saatiin vuonna 2016.

Nyt tutkijat ovat onnistuneet luomaan Aalto-yliopiston Kylmälaboratoriossa kokeellisesti kaksi aikakidettä ja seuraamaan niiden välistä vuorovaikutusta.

Tutkimus julkaistiin äskettäin Nature Communication -lehdessä.

Tavallisessa kiteessä atomit tai molekyylit ovat järjestäytyneet säännölliseksi kiderakenteeksi. Aikakide taas on hiukkasryhmittymä, joka liikkuu ikuisesti ilman ulkopuolista energiaa, palaten samaan tilaan tietyin väliajoin. Sen säännöllisyys ilmenee siis ajallisesti eikä paikassa.

”Kaikki tietävät, että ikiliikkujat ovat mahdottomia. Kvanttifysiikassa ikuinen liike on kuitenkin mahdollista, joskin vain niin kauan, kun sitä ei havaita. Kytkemällä hiukkaset ympäristöönsä vain heikosti, onnistuimme luomaan jopa kaksi aikakidettä ja asettamaan ne vuorovaikutukseen keskenään”, Aallossa aikakidekokeen toteuttanut ja nyt Lancasterin yliopistossa tutkijana työskentelevä Samuli Autti sanoo.

Koe lähellä absoluuttista nollapistettä

Tutkijat jäähdyttivät kokeessa helium-3 -supranestettä kymmenestuhannesosan päähän absoluuttisesta nollapisteestä, eli lämpömittari näytti lukemaa -273,15 °C. Sen jälkeen he loivat kaksi aikakidettä nesteen sisällä. Kiteet voivat elää jopa muutamia minuutteja, mikä on kvantti-ilmiöille huomattavan pitkä aika. Pitkän elinajan johdosta tutkijat ehtivät tarkkailla niiden ominaisuuksia ja vuorovaikutusta.

Aikakiteet muodostivat kokeessa yhdessä kvanttimekaanisen kaksitasojärjestelmän eli kahden kvanttitilan yhdistelmän, joka voi olla osittain kummassakin tilassa samaan aikaan.

Aalto-yliopiston tutkijatohtori Jere Mäkinen kertoo, että aikakiteiden tilaa voi kuvata oskillaatiolla eli siniaallolla, jolla on hiukkasmäärään liittyvä amplitudi ja aikakiteen energiatilaa kuvaava taajuus.

”Luomillamme aikakiteillä on se ero, että toisen taajuus muuttuu ajassa, toisen ei. Kokeessa nämä taajuudet saatiin risteämään mitattavalla alueella. Sillä hetkellä, kun aikakiteiden taajuudet ovat keskenään likimain samat, aikakiteet vuorovaikuttavat keskenään ja osa amplitudista siirtyy kiteeltä toiselle. Toisessa tekemistämme kokeista vakiona pysyvä aikakide oli alussa 'tyhjä' eli sen amplitudi oli nolla. Kun toisen aikakiteen taajuus sitten ristesi tyhjän aikakiteen taajuuden kanssa, siirtyi osa amplitudista alun perin tyhjälle kiteelle juuri kaksitasosysteemejä kuvaavan teorian ennustamalla tavalla”, Mäkinen selittää.

Hyvä esimerkki kaksitasojärjestelmästä on kubitti eli kvanttitietokoneen vastine tietokoneen bitille. Siinä missä tavallinen bitti voi saada joko arvon 0 tai 1, kubitti voi olla molempia samaan aikaan. Osittain tästä syystä kvanttitietokoneiden tiedonkäsittelykyky voi olla moninkertainen perinteisiin tietokoneisiin verrattuna.

Kaksitasojärjestelmän muodostumisen perusteella aikakiteitä voisi tulevaisuudessa hyödyntää erilaisissa laitteissa, kuten kvanttitietokoneiden muistina. Koska aikakiteitä on luotu myös huoneenlämpötilassa, niitä voisi hyödyntää myös huoneenlämmössä toimivissa kvanttilaitteissa. Mäkisen mukaan kiteiden tutkimus on kuitenkin vasta niin alussa, että mahdollisia sovelluskohteita voidaan vain spekuloida.

”Kvanttitietokoneiden lisäksi aikakiteistä voisi olla hyötyä esimerkiksi ajan äärimmäisen tarkassa mittaamisessa.”

Kylmälaboratorio, jossa koe suoritettiin, on osa Otaniemessä sijaitsevaa OtaNano-tutkimusinfrastruktuuria, joka on tutkijoiden ja yritysten käytössä.

Lisätietoja:

Jere Mäkinen
Tutkijatohtori
Aalto-yliopisto
[email protected]
puh. 044 3675 125

Samuli Autti
Tutkija
Lancasterin yliopisto
[email protected]
puh. +44 7375926775

 

Katso alta aikakristallien olemassaolon teoretisoineen Nobel-voittaja Frank Wilczekin puhe Aalto-yliopistolla kvanttiyhteisö InstituteQ:n tapahtumassa 27. toukokuuta 2022.

InstituteQ. Photo: Jorden Senior.

InstituteQ – kansallinen kvantti-instituutti

Aalto-yliopiston, Helsingin yliopiston ja VTT:n InstituteQ-yhteistyö kokoaa kansallisen kvanttiteknologian tutkimuksen, koulutuksen ja yrityskentän.

Tutkimus ja taide
Aalto yliopisto piisirulla

OtaNano

Otaniemen mikro- ja nanoteknologioiden infrastruktuuri OtaNano on kansallinen tutkimusinfrastruktuuri kilpailukykyisen tutkimuksen harjoittamiseen nanotieteiden ja -teknologian sekä kvanttiteknologioiden alalla.

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Lauri Parkkonen and the family cat, Roosa. Photo: Lauri Parkkonen, Aalto, University.
Mediatiedotteet Julkaistu:

Mitä koirien ja kissojen aivoissa tapahtuu? Uusi kuvantamismenetelmä selvittää lemmikkien mielen saloja

Aalto-yliopiston professori Lauri Parkkosen ryhmä on vuosia kehittänyt kvanttioptisia antureita aivomagneettikäyrän eli magnetoenkefalografian (MEG) mittaamiseen. Toisin kuin perinteisessä MEG-laitteessa, jossa hyvin kylmässä toimivat suprajohtavat anturit vaativat ympärilleen senttimetrejä paksun lämpöeristeen, nämä uudet huoneenlämpötilassa toimivat anturit voidaan tuoda suoraan pään pinnalle. Tämä mahdollistaa entistä tarkemmat aivomagneettikäyrien mittaukset. MEG-kuvantaminen on tutkittavalle kivutonta ja turvallista.
Valkoinen laboratoriotakki sekä analyysityökalu, jolla voidaan mitata veripisarasta särkylääkkeen pitoisuus.
Mediatiedotteet Julkaistu:

Kannettava ja nopea analysointityökalu voi mullistaa kipulääkkeiden diagnostiikkamarkkinat

Aalto-yliopistosta ponnistanut startup-yritys Fepod Oy Ltd on kehittänyt diagnoosimenetelmän, jolla potilaan veren kipulääkepitoisuus voidaan selvittää nopeasti ja edullisesti suoraan hoitopaikalla.
Yhdistelmäkuva, jossa näkyy revontulia, Maa, mittauksia.
Mediatiedotteet Julkaistu:

Suomi 100 -satelliitti teki sen, mihin aiemmin pystyivät vain paljon suuremmat: kuvasi ja tutki revontulia

Revontulialueen tutkiminen auttaa esimerkiksi turvallisten tietoliikenneyhteyksien kehittämisessä.
Professor Jose Lado, facing the camera, sitting on wooden steps.
Mediatiedotteet Julkaistu:

Atomitason näkymä suprajohtavuuteen viitoittaa tietä uusille kvanttimateriaaleille

Aalto-yliopiston ja Yhdysvalloissa sijaitsevan Oak Ridge National Laboratoryn tutkijat ovat kehittäneet uuden menetelmän, jolla voidaan ensimmäistä kertaa mitata kvanttihiukkausten tiloja suprajohtimissa yksittäisten atomien tasolla. Näiden tilojen havaitseminen on tärkeä askel kohti eksoottisten eli epätavallisten suprajohtimien parempaa ymmärtämistä. Uusi tekniikka voi auttaa kvanttitietokoneiden kehittämistyötä ja kenties jopa tuoda huoneenlämmössä toimivan suprajohtimen lähemmäksi todellisuutta.