Uutiset

Ihmiskorva erottaa jopa puolen millisekunnin viiveen

Tutkijat selvittivät, millaisia aikaeroja ihmiskorva pystyy havaitsemaan äänen eri taajuuksien saapumisessa.
 Äänen viivettä on tutkittu Suomen hiljaisimmassa huoneessa Otaniemessä sijaitsevassa kaiuttomassa huoneessa.  Kuva: Aalto-yliopisto / Mikko Raskinen
Äänen viivettä on tutkittu Suomen hiljaisimmassa huoneessa Otaniemessä sijaitsevassa kaiuttomassa huoneessa. Kuva: Aalto-yliopisto / Mikko Raskinen

Kuulo on ihmisen herkimpiä aisteja, ja siksi pienetkin äänen laadun ongelmat voivat häiritä kuuntelukokemusta.

Aalto-yliopiston akustiikan tutkijat selvittivät yhdessä kaiutinvalmistaja Genelecin kanssa, miten pieniä viiveitä ihmiskorva pystyy erottamaan ihmisen kuulon herkimmällä alueella. Ihminen aistii ääntä 20-20000 hertsin välillä.

Ainutlaatuisen tutkimuksesta teki se, että tutkijat selvittivät paitsi viivästymisen vaikutusta myös sitä, miten kuulija aistii sen, kun tietty taajuussisältö siirtyykin ajallisesti aikaisemmaksi. Käytännössä se tarkoittaa, että tutkijat pystyivät selvittämään, kuinka herkästi ihminen kuulee tietyn taajuusalueen äänitapahtuman, kun se saapuu korvaan ennen muita ääniä.

Negatiivinen viive tuhannesosasekunnin murto-osien tarkkuudella tuotettiin suodattimilla, jotka siirtelevät taajuuksia ajassa eri kohtaan muuttamatta äänen määrää.

”Käyttämämme taajuusselektiivinen takaperin suodattaminen on uusi tekniikka digitaalisen signaalinkäsittelyn alalla. Negatiivisen viiveen aikaansaaminen edellyttää siirtymistä ajassa tulevaisuuteen. Tämä ilmiö tuotettiin ohjelmistolla, joka toimi näin vertauskuvallisesti aikakoneena”, kertoo Aalto-yliopiston tutkijatohtori Juho Liski.

A person sitting with headphones on in front of a computer screen.
Testihenkilöt keskittyivät ääniin kuuntelukopeissa ja kirjasivat havaintonsa tietokoneelle. Kuva: Aalto-yliopisto / Niina Norjamäki

Tuhannesosasekunnin viiveellä on merkitys

Kuuntelukokeessa kaksitoista koehenkilöä sai kuultavakseen käsitellyn ja käsittelemättömän äänen, ja tutkijat selvittivät, pystyivätkö koehenkilöt erottamaan ne luotettavasti toisistaan. Erotuskykyisinä testiääninä käytettiin muun muassa rytmisoitin kastanjettia ja lyhyitä napsahduksia.

”Kaiuttimen vahvistuksen vaihtelun kuuluvuus eri taajuuksilla tunnetaan hyvin, mutta ryhmäviiveen vaihtelun kuuluvuutta on tutkittu vähemmän. Ryhmäviiveen vaihtelu johtaa tiettyjen taajuusalueiden siirtymiseen ajassa eteen tai taaksepäin muihin taajuuksiin verrattuna”, Aalto-yliopiston professori Vesa Välimäki toteaa.

Tiedetään, että tavallisesti ääni viivästyy kulkiessaan kaiuttimen läpi, mutta sitä ei, kuinka herkästi tästä aiheutuva muutos on kuultavissa eri taajuuksilla.

”Tutkimus osoitti, että eroja signaaleissa kuului, kun ääni alkoi tietyllä taajuudella etuajassa noin puolen millisekunnin verran. Myös tiettyjen taajuuksien viivästäminen suhteessa muuhun ääneen oli kuultavissa. Havaintokynnyksen ylittävä viivemuutoksen määrä vaihteli huomattavasti eri taajuuksilla. Viiveet havaittiin erityisesti, kun ääni alkoi tai loppui”, Välimäki ja Liski kertovat työn tuloksista.

Digitaalisen signaalinkäsittelyn kehittyminen on mahdollistanut erittäin tarkan äänenkäsittelyn, mikä avaa uusia mahdollisuuksia akustiikan tutkimuksessa ja kehityksessä.

”Tärkein tavoitteemme kehitystyössä on tuoda kuuluviin kaikki se, mikä on äänitetty, mutta ei mitään ylimääräistä. Kaiuttimien kyky tuottaa tarkka stereoäänikuva on tärkeä ominaisuus, ja ajallisesti tarkan äänisignaalin tuottaminen on keskeinen osa tätä. Tutkimusyhteistyö Aalto-yliopiston kanssa on tärkeää, koska näin opimme tuntemaan tarkemmin tarkkuusvaatimuksen, johon kaiuttimien suunnittelussa on päästävä. Meitä kiinnostaa se raja, jonka jälkeen ihminen ei enää kykene kuulemaan eroa äänen samanaikaisuuden parantuessa”, Aki Mäkivirta, Genelecin R&D-johtaja sanoo.

Tulokset on julkaistu alan huippulehdessä IEEE/ACM Transactions on Audio, Speech, and Language Processing. Open Access -artikkeli on luettavissa tästä linkistä.

Viiveen kuulemista on tutkittu Aalto-yliopiston akustiikan laboratoriossa viime vuosina IMPRESS- ja IMPRESS2-projekteissa, jotka Genelec on rahoittanut.

Lisätietoa:

Juho Liski
Tutkijatohtori, Aalto-yliopisto, signaalinkäsittelyn ja akustiikan laitos
[email protected]
040 547 5560

Vesa Välimäki
professori, Aalto-yliopisto, signaalinkäsittelyn ja akustiikan laitos
[email protected]
050 569 1176

Aki Mäkivirta
R&D-johtaja, Genelec
[email protected]
050 553 5915

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Havainnekuva rintasyöpäsoluista mikroskoopissa
Mediatiedotteet Julkaistu:

Rintasyöpäsolu leviää tekemällä kudosmateriaaliin käytäviä – uusi mittausmenetelmä paljasti hämmästyttävän tiedon solun käyttämistä voimista

Mittaukset osoittivat, että solu tuottaa voimasykäyksiä paljon lyhyemmissä sykleissä kuin aiemmin on ajateltu. Aalto-yliopiston ja Stanfordin yliopiston kehittämä mittausmenetelmä voi auttaa rintasyöpätutkimusta ja vauhdittaa lääkkeiden kehitystä.
Tuoleja ravintolatilassa, taustalla asiakaspalvelutilanne
Mediatiedotteet Julkaistu:

Uusi teknologia voi auttaa tekemään kestäviä ruokavalintoja

Lohkoketjusovellus antaa tietoa ruoan ympäristövaikutuksista ja paremman kokonaiskuvan eri valintojen merkityksestä.
A schematic showing two circular light waves coming from the left, passing through a square representing the modulator, and emerging as a single linear light beam.
Mediatiedotteet Julkaistu:

Valollakin on kätisyys – ja sen hallitseminen tehostaa optista teknologiaa

Uusi optinen modulaattori on miljoonaa kertaa nykyisiä vaihtoehtoja nopeampi. Se voi parantaa optisten teknologioiden suorituskykyä monissa sovelluksissa, viestinnästä tietotekniikkaan.
Lauri Parkkonen and the family cat, Roosa. Photo: Lauri Parkkonen, Aalto, University.
Mediatiedotteet Julkaistu:

Mitä koirien ja kissojen aivoissa tapahtuu? Uusi kuvantamismenetelmä selvittää lemmikkien mielen saloja

Aalto-yliopiston professori Lauri Parkkosen ryhmä on vuosia kehittänyt kvanttioptisia antureita aivomagneettikäyrän eli magnetoenkefalografian (MEG) mittaamiseen. Toisin kuin perinteisessä MEG-laitteessa, jossa hyvin kylmässä toimivat suprajohtavat anturit vaativat ympärilleen senttimetrejä paksun lämpöeristeen, nämä uudet huoneenlämpötilassa toimivat anturit voidaan tuoda suoraan pään pinnalle. Tämä mahdollistaa entistä tarkemmat aivomagneettikäyrien mittaukset. MEG-kuvantaminen on tutkittavalle kivutonta ja turvallista.