Uutiset

Ihminenkin voi saada superkuulon – uudella audiotekniikalla voi seurata jopa lepakoiden lentoa

Ultraääni tallennetaan pienen pallon pinnalla olevilla mikrofoneilla ja toistetaan signaalinkäsittelyn jälkeen kuulokkeilla. Teknologiasta voi olla hyötyä esimerkiksi putkivuotojen paikantamisessa.
Superkuulon toteuttava laite. Pallon pinnalla on kuusi ultraäänille herkkää mikrofonia. Ultraäänet toistetaan kuulokkeisiin niin, että kuulija havaitsee äänilähteen suunnan oikein. Kuva: Ville Pulkki / Aalto-yliopisto
Superkuulon toteuttava laite. Pallon pinnalla on kuusi ultraäänille herkkää mikrofonia. Ultraäänet toistetaan kuulokkeisiin niin, että kuulija havaitsee äänilähteen suunnan oikein. Kuva: Ville Pulkki / Aalto-yliopisto

Ihminen havaitsee kuulon perusteella, mitä ympäristössä tapahtuu ja missä se tapahtuu, kunhan äänilähteen taajuudet ovat 20 hertsin ja 20 000 hertsin välillä.

Nyt Aalto-yliopiston tutkijat ovat kehittäneet uuden audiotekniikan, jonka avulla ihminen voi havaita myös ultraäänilähteet, jotka tuottavat ääniä yli 20 000 hertsin taajuudella sekä havaita, mistä suunnasta äänet tulevat.

”Käytimme tutkimuksessa ultraäänilähteenä lepakoita. Lepakoita on kuunneltu aiemminkin pienten laitteiden avulla. Nyt keksityssä teknologiassa on mahdollista kuulla myös äänilähteiden tulosuunnat eli esimerkiksi seurata lepakoiden lentämistä ja kuulla, missä ne ovat”, Aalto-yliopiston professori Ville Pulkki kertoo.

Aistien parantamista ja käytännön sovelluksia

Ultraääni tallennetaan pienen pallon pinnalla olevilla mikrofoneilla, joita on tasaisesti pallon jokaisella puolella. Signaalinkäsittelyn jälkeen ääni toistetaan kuulokkeilla välittömästi. Signaalinkäsittely tapahtuu tällä hetkellä tietokoneessa, mutta sen voisi tulevaisuudessa toteuttaa kuulokkeisiin kiinnitetyllä elektroniikalla.

”Mikrofonien signaaleista analysoidaan äänikenttä ja lopputuloksena tiedetään, mistä eri ultraäänet tulevat, ja milloin ääni saapuu vain yhdestä lähteestä. Tämän jälkeen yksi mikrofonisignaali tuodaan ihmisen korvan kuultaville taajuuksille ja toistetaan kuulokkeisiin niin, että ihminen havaitsee, mistä suunnasta äänen analysoitiin tulevan”, Pulkki sanoo.

Miksi tarkka kuuleminen on sitten tärkeää?

”Tieteessä ja taiteessa ihmistä on aina kiinnostanut se, miten aisteja voitaisiin parantaa. Ultraäänilähteiden havaitseminen on hyödyllistä myös monissa käytännön sovelluksissa. Yksi esimerkki on paineistetuissa kaasuputkissa olevien vuotojen etsiminen. Pieni putkivuoto tuottaa usein runsaasti normaalikuulolle kuulumatonta ultraääntä. Laitteen avulla äänilähde on löydettävissä nopeasti”, Pulkki selittää.

”Joskus myös vioittuneet sähkölaitteet tuottavat ultraääniä, ja laitteella voitaisiin paikallistaa nopeammin viat esimerkiksi konesaleissa”, hän jatkaa.

Tulokset on julkaistu alan arvostetussa Scientific Reports (Springer Nature) -lehdessä. Open Access -artikkeli on luettavissa tästä linkistä (nature.com)

Kuuntele lepakoiden ääniä ja tutustu tutkimukseen videon avulla. Efekti on kuultavissa ainoastaan kuulokkeilla.

Lisätietoa:
Professori Ville Pulkki
Aalto-yliopisto, signaalinkäsittelyn ja akustiikan laitos
[email protected]  
050 520 8392

Lue myös:
Suomen hiljaisin paikka - Akustiikan laboratorion peruskorjaus valmistui

Ultraääniä ja niiden kuulemista laitteen avulla testattiin Suomen hiljaisimmassa paikassa: Aalto-yliopiston kaiuttomassa huoneessa Otaniemen kampuksella. Kuva: Ville Pulkki / Aalto-yliopisto
Ultraääniä ja niiden kuulemista laitteen avulla testattiin Suomen hiljaisimmassa paikassa: Aalto-yliopiston kaiuttomassa huoneessa Otaniemen kampuksella. Kuva: Ville Pulkki / Aalto-yliopisto
  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Tuoleja ravintolatilassa, taustalla asiakaspalvelutilanne
Mediatiedotteet Julkaistu:

Uusi teknologia voi auttaa tekemään kestäviä ruokavalintoja

Lohkoketjusovellus antaa tietoa ruoan ympäristövaikutuksista ja paremman kokonaiskuvan eri valintojen merkityksestä.
A schematic showing two circular light waves coming from the left, passing through a square representing the modulator, and emerging as a single linear light beam.
Mediatiedotteet Julkaistu:

Valollakin on kätisyys – ja sen hallitseminen tehostaa optista teknologiaa

Uusi optinen modulaattori on miljoonaa kertaa nykyisiä vaihtoehtoja nopeampi. Se voi parantaa optisten teknologioiden suorituskykyä monissa sovelluksissa, viestinnästä tietotekniikkaan.
Lauri Parkkonen and the family cat, Roosa. Photo: Lauri Parkkonen, Aalto, University.
Mediatiedotteet Julkaistu:

Mitä koirien ja kissojen aivoissa tapahtuu? Uusi kuvantamismenetelmä selvittää lemmikkien mielen saloja

Aalto-yliopiston professori Lauri Parkkosen ryhmä on vuosia kehittänyt kvanttioptisia antureita aivomagneettikäyrän eli magnetoenkefalografian (MEG) mittaamiseen. Toisin kuin perinteisessä MEG-laitteessa, jossa hyvin kylmässä toimivat suprajohtavat anturit vaativat ympärilleen senttimetrejä paksun lämpöeristeen, nämä uudet huoneenlämpötilassa toimivat anturit voidaan tuoda suoraan pään pinnalle. Tämä mahdollistaa entistä tarkemmat aivomagneettikäyrien mittaukset. MEG-kuvantaminen on tutkittavalle kivutonta ja turvallista.
Kuvaa laitteittosta Aalto-yliopsiton Kylmälaboratoriossa.
Mediatiedotteet Julkaistu:

Ikuinen liike on mahdollista – Aalto-yliopiston Kylmälaboratoriossa havainnoitiin kahden fysiikan lait haastavan aikakiteen välistä vuorovaikutusta

Aikakiteet ovat aineen olomuoto, jossa hiukkaset liikkuvat ikuisesti toistuvassa rytmissä ilman ulkopuolista energiaa. Tutkijat onnistuivat luomaan Aalto-yliopiston Kylmälaboratoriossa kaksi aikakidettä ja tarkkailemaan niiden välistä vuorovaikutusta. Tulevaisuudessa aikakiteitä voi hyödyntää erilaisissa laitteissa, kuten kvanttitietokoneiden muistina.