Uutiset

Aurinkokennojen ja erikoislasien rakennuspalikat voidaan saada puusta – tai miljardin tonnin jätevuoresta

Kansainvälinen tutkijaryhmä kartoitti, miten kasvien biomassalla voidaan korvata uusiutumattomia luonnonvaroja optisissa sovelluksissa. Metsän sijaan tutkijat hakisivat raaka-ainetta elintarviketeollisuuden ja maatalouden sivuvirroista.
nanoselluloosakalvoja
Nanosellulloosakomposiittikalvoja erilaisilla optisilla ominaisuuksilla. Kuva: Derya Atas

Sähköistyvä, digitalisoituva ja kaupungistuva maailma kuluttaa valtavasti ympäristön kannalta ongelmallisia raaka-aineita. Esimerkiksi lasiin tarvittavan hiekan povataan loppuvan maailmasta, ja lasin kierrättäminen puolestaan nielee paljon energiaa. Muovin rakennuspalikat tulevat öljyteollisuuden sivuvirroista.

Ratkaisu voi löytyä uusiutuvista raaka-aineista, uskovat Aalto-yliopiston, Turun yliopiston, Tukholman yliopiston ja Brittiläisen Kolumbian yliopiston (UBC) tutkijat. Arvostetussa Advanced Materials -lehdessä julkaistussa tutkimuksessa he kartoittivat, miten lignoselluloosasta eli kasvien biomassasta voidaan pilkkomalla ja uudelleen kokoamalla saada materiaaleja optisiin eli valoa eri lailla hyödyntäviin ja ohjaaviin sovelluksiin. 

”Tutkimuksen tarkoitus oli kartoittaa mahdollisimman kattavasti mahdollisuudet, joita lignoselluloosan komponenteilla on uusiutumattomien raaka-aineiden korvaajina”, kertoo toiminnallisten materiaalien apulaisprofessori Jaana Vapaavuori Aalto-yliopistosta.

Lignoselluloosa koostuu selluloosasta, hemiselluloosasta ja ligniinistä. Puiden lisäksi näitä komponentteja on vaihtelevissa määrin lähes kaikkien kasvien tukirakenteissa.

Kun selluloosaa, hemiselluloosaa ja ligniiniä pilkotaan hyvin pieniksi osiksi ja kootaan sitten uudelleen, voidaan saada aikaan uusia, toiminnallisia materiaaleja. Tutkijat kävivät artikkelissa läpi rakennuspalikoiden eri valmistustavat ja ominaisuudet, jotka ovat optisten sovellusten kannalta merkittäviä. Näitä ovat esimerkiksi läpinäkyvyys, heijastavuus, UV-valon suodatus ja rakenteelliset värit.

”Sopivasti yhdistelemällä niistä voidaan esimerkiksi saada valoon reagoivia pinnoitteita ikkunoihin, ja materiaaleja, jotka reagoivat tiettyyn kemikaaliin tai höyryyn. Tai UV-suojia, jotka imevät haitallisen säteilyn ja toimivat pinnoille ikään kuin aurinkorasvoina”, Vapaavuori selittää.

”Lignoselluloosaan voidaan lisätä toimintoja ja räätälöidä sitä paljon helpommin kuin lasia. Voimme tehdä siitä esimerkiksi aurinkokennoihin lasin korvikkeita, jotka edistävät valon imeytymistä ja näin kennon hyötysuhde saadaan paremmaksi kuin perinteisellä lasilla”, kertoo materiaalitekniikan professori Kati Miettunen Turun yliopistosta. 

Tutkijat katsovat nanoselluloosakalvoja
Professori Kati Miettunen, apulaisprofessori Jaana Vapaavuori ja tohtorikoulutettava Yazan al Haj tutkivat nanoselluloosakalvoja. Kuva: Mikael Nyberg

Iso käyttämätön potentiaali

Lignoselluloosaa muodostuu maapallolla yli 180 miljardia tonnia vuodessa. Koska metsien biomassalle on jo kova kysyntä, ja maapallon hiilinielujen kasvattaminen on tärkeää, tutkijat korostavat muiden raaka-ainelähteiden mahdollisuuksia.

Maapallolla syntyy vuosittain yli miljardi tonnia biomassaa sisältävää jätettä, erityisesti elintarviketeollisuudessa ja maataloudessa.

”Suuri käyttämätön potentiaali on edelleen siellä”, Jaana Vapaavuori korostaa.

Tällä hetkellä biopohjaiset optiset materiaalit ovat vielä perustutkimuksen ja prototyyppien asteella. Aalto-ylipistossa on kehitetty esimerkiksi valokuituja ja valoon reagoivia kankaita.

Jaana Vapaavuori sanoo, että loikka tuotannon skaalamiseen ja kaupallistamiseen voi lähteä kahdesta suunnasta.  

”Joko säätelyn kautta luodaan painetta kehittää jätteelle uusia käyttötarkoituksia. Tai sitten tutkimuksesta syntyy niin siistejä demoja ja teknisiä läpimurtoja, että kysyntä uusiutuvasta raaka-aineesta tehdyille optisille sovelluksille ja niiden raaka-aineille syntyy sitä kautta. Me uskomme, että molemmille on tarvetta: poliittiselle ohjaukselle ja vahvalle tutkimuspanostukselle.”

Lignoselluloosapohjaisten innovaatioiden kehittämistä ja kaupallistamista on hidastanut valmistusmenetelmien hinta. Esimerkiksi nanoselluloosan mahdollisuuksia hehkutettiin jo vuosituhannen alussa, mutta vasta nyt valmistuksen energiankulutus ja kustannukset on saatu niin alas, että sen teollinen hyödyntäminen on mahdollista.Toinen haaste on selluloosan ja veden kohtaaminen.

”Selluloosahan rakastaa vettä. Siksi siitä tehtyjen optisten materiaalien vakaus kosteissa oloissa on asia, jota tutkijat ympäri maailmaa yrittävät ratkaista”, Vapaavuori sanoo.

Elektronimikroskooppikuva nanoselluloosakalvoista
Elektronimikroskooppikuvia optisista kalvoista, jotka on valmistettu nanoselluloosasta. Kuva: Derya Atas

Plant-based Structures as an Opportunity to Engineer Optical Functions in next-generation Light Management

Linkki artikkeliin (onlinelibrary.wiley.com)

Lisätietoja:

Apulaisprofessori Jaana Vapaavuori, Aalto-yliopisto
puh. 050 476 0223
[email protected]

Professori Kati Miettunen, Turun yliopisto
puh. 040 544 8742
[email protected]

FinnCERES – materiaalien biotalouden osaamiskeskittymä

Tavoitteena kehittää puuraaka-aineesta biotalouden materiaaleja varmistaen samalla edellytykset kestävään, ympäristöä säästävään tulevaisuuteen.

Lue lisää
Birch leaves. Photo: Valeria Azovskaya
  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

Min-Kyu Paek
Nimitykset Julkaistu:

Min-Kyu Paek on nimitetty määräaikaiseen apulaisprofessorin tehtävään Kemian tekniikan ja metallurgian laitokselle

Min-Kyu Paek on nimitetty määräaikaiseen apulaisprofessorin tehtävään Kemian tekniikan ja metallurgian laitokselle.
Event information on a yellow to coral gradient background with yellow bubbles and a photo of a colorful event space.
Palkinnot ja tunnustukset, Kampus, Tutkimus ja taide Julkaistu:

Tule mukaan ensimmäiseen Aallon avoimen tieteen palkintotapahtumaan

Kaikki aaltolaiset ovat tervetulleita, osallistuminen ei vaadi ilmoittautumista!
Image from the conferment ceremony
Yhteistyö, Tutkimus ja taide, Yliopisto Julkaistu:
Shankar Deka on sähkötekniikan ja automaation laitoksen apulaisprofessori.
Tutkimus ja taide Julkaistu:

Robotiikka tarvitsee turvallisia käyttäytymismalleja

Robotiikka ja autonomiset järjestelmät kehittyvät nopeasti. Algoritmit, jotka kestävät häiriöitä ja epävarmuustekijöitä järjestelmässä ja ympäristössä, ovat kehityksen kannalta kriittisiä.