Rohit Babbar

Visitor
Visitor
T313 Dept. Computer Science

I am an Assistant Professor at the department of Computer Science, Aalto University in Finland. Along with my research group, we work on problems in large scale machine learning particularly encountered in extreme classification with large output spaces, and robustness

Full researcher profile
https://research.aalto.fi/...
Puhelinnumero
+358505122646

Osaamisalueet

large scale learning, extreme multi-label classification, deep learning, sequential data, robustness

Palkinnot

Outstanding Reviewer Award ACL 2021 Conference

Award or honor granted for a specific work Computer Science Professors Jul 2021

Tutkimusryhmät

  • Professorship Marttinen P., Assistant Professor

Julkaisut

UniDEC : Unified Dual Encoder and Classifier Training for Extreme Multi-Label Classification

Siddhant Kharbanda, Devaansh Gupta, K. Gururaj, Pankaj Malhotra, Amit Singh, Cho Jui Hsieh, Rohit Babbar 2025 WWW 2025 - Proceedings of the ACM Web Conference

How Well Calibrated are Extreme Multi-label Classifiers? An Empirical Analysis

Nasib Ullah, Erik Schultheis, Jinbin Zhang, Rohit Babbar 2025 KDD 2025 : Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining

Navigating Extremes: Dynamic Sparsity in Large Output Spaces

Nasib Ullah, Erik Schultheis, Mike Lasby, Yani Ioannou, Rohit Babbar 2025 Advances in Neural Information Processing Systems 37 (NeurIPS 2024)

Large Language Model as a Teacher for Zero-shot Tagging at Extreme Scales

Jinbin Zhang, Nasib Ullah, Rohit Babbar 2025 The 31st International Conference on Computational Linguistics (COLING 2025)

Gandalf: Learning Label-label Correlations in Extreme Multi-label Classification via Label Features

Siddhant Kharbanda, Devaansh Gupta, Erik Schultheis, Atmadeep Banerjee, Cho Jui Hsieh, Rohit Babbar 2024 KDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

A General Online Algorithm for Optimizing Complex Performance Metrics

Wojciech Kotłowski, Marek Wydmuch, Erik Schultheis, Rohit Babbar, Krzysztof Dembczyński 2024 Proceedings of Machine Learning Research

Meta-classifier free negative sampling for extreme multilabel classification

Mohammadreza Mohammadnia Qaraei, Rohit Babbar 2024 Machine Learning

Consistent algorithms for multi-label classification with macro-at-k metrics

Erik Schultheis, Wojciech Kotłowski, Marek Wydmuch, Rohit Babbar, Strom Borman, Krzysztof Dembczyński 2024 12th International Conference on Learning Representations (ICLR 2024)

Generalized test utilities for long-tail performance in extreme multi-label classification

Erik Schultheis, Marek Wydmuch, Wojciech Kotlowski, Rohit Babbar, Krzysztof Dembczynski 2024 Advances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023

InceptionXML: A Lightweight Framework with Synchronized Negative Sampling for Short Text Extreme Classification

Siddhant Kharbanda, Atmadeep Banerjee, Devaansh Gupta, Akash Palrecha, Rohit Babbar 2023 SIGIR '23: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval