Uutiset

Tutkijat löysivät uuden kvanttihiukkasen – pallosalamaa muistuttavan skyrmionin

Solmumainen skyrmioni voi auttaa tutkijoita pitämään plasmapalloa koossa tehokkaasti.
Taiteellinen näkemys kvanttimekaanisesta pallosalamasta. Kuva: Heikka Valja.

Aalto-yliopiston ja yhdysvaltalaisen Amherst Collegen tutkijat ovat ensi kertaa onnistuneet luomaan kvanttikaasussa kolmiulotteisen skyrmionin. Se ennustettiin teoreettisesti yli 40 vuotta sitten, ja nyt se on havaittu myös kokeellisesti.

”Olemme luoneet keinotekoisen sähkömagneettisen solmun, kvanttipallosalaman, vain kahden vastakkaiseen suuntaan pyörivän sähkövirran avulla. Pidän siksi mahdollisena, että luonnollinen pallosalama voisi syntyä tavanomaisessa salamaniskussa”, kertoo tutkimuksen teoreettisesta osuudesta vastannut tutkija Mikko Möttönen.

Video kuvaa skyrmionin kokeellista luontia sivusta. Eri magneettisen momentin eli spin-vektorin suunnat muodostuvat erillisiin alueisiin oikealla (ylöspäin), keskellä (vaakasuunta) ja vasemmalla (alaspäin). Alueet on kuvannettu erillisinä, vaikka todellisuudessa kondensaatteja on vain yksi. Mitä vaaleampi väri kondensaatissa on, sitä suurempi on hiukkastiheys. Video: Tuomas Ollikainen.

Hän kertoo myös nähneensä itse talon sisään syöksyneen pallosalaman. Vastaavia havaintoja on tehty läpi historian, mutta fyysisiä todisteita on vähän.

Magneettisten momenttien eli spinien muodostamat solmut luodaan erittäin harvassa ja kylmässä kvanttikaasussa. Spinien muodostamilla solmuilla on monia pallosalamaa muistuttavia ominaisuuksia. Joidenkin tutkijoiden mukaan pallosalama koostuu varautuneiden hiukkasvirtojen kietoutuneista vyyhdeistä.

Näkymä koelaitteiston tyhjiökammioon, jossa kolmedimensioinen skyrmioni luotiin. Kuva: Russell Anderson.

Kvanttikaasun atomien liike vastaa varautunutta hiukkasta pallosalaman solmumaisessa magneettikentässä. Solmujen kestävyys voi olla syy siihen, miksi pallosalama tai plasmapallo elää yllättävän pitkään verrattuna salamaniskuun. Nyt saavutetut tutkimustulokset voivat innoittaa löytämään uusia tapoja pitää plasmapallo koossa myös fuusioreaktorin sisällä.

”Pitää tutkia tarkemmin, voiko tällaisella menetelmällä saada aikaan myös oikeita pallosalamia. Jatkotutkimus voisi johtaa esimerkiksi nykyistä vakaampaan fuusioreaktoriin, kun plasmaa voitaisiin pitää koossa nykyisiä keinoja tehokkaammin”, tarkentaa Möttönen.

Spinit pyörivät skyrmionissa ja saavat aikaan kestävän solmun

”Kvanttikaasu jäähdytetään hyvin kylmäksi, Bosen-Einsteinin kondensaatiksi, jossa kaikki atomit päätyvät matalimman energian tilaan. Silloin se käyttäytyy kuin jättimäinen atomi tavanomaisen kaasun sijaan”, kuvailee tutkimuksen kokeellisesta osuudesta vastannut professori David Hall.

Skyrmioni luodaan alkutilasta, jossa jokaisen atomin magneettinen momentti eli spin osoittaa ylöspäin, kuten myös luonnollinen magneettikenttä. Sitten magneettikenttää muutetaan niin, että sen nollakohta asettuu kaasusta muodostuvan kondensaatin keskelle. Spinit lähtevät pyörimään kussakin paikassa olevan magneettikentän suunnan ympäri. Koska magneettinen kenttä osoittaa kaikkiin mahdollisiin suuntiin nollakohdan lähellä, spinit kiertyvät solmuun.

Leikkaus pallomaisen skyrmionin rakenteesta sen luomisprosessin aikana. Skyrmionin muodostavan kentän tilaa kuvataan kolmikolla, jossa on kolme kohtisuoraa akselia. Aluksi kaikki kolmikot osoittavat samaan suuntaan, mutta luomisprosessin aikana ne pyörivät eri akselien ympäri, mikä lopulta saa aikaan skyrmionin, jossa kukin suunta esiintyy tasan kaksi kertaa. Kolmikon vihreä kärki osoittaa spinin suunnan. Kaikki kolmikot, joilla on sama spinin suunta, muodostavat suljetun käyrän, joita näytetään videossa kolme (keltainen, violetti ja oranssi). Kukin tällainen rengas lävistää kaikki muut renkaat kerran, mistä syntyy solmumainen rakenne. Video: David Hall.

Skyrmionin solmumaisessa rakenteessa kukin alue, jossa spin osoittaa tiettyyn samaan suuntaan, muodostaa rinkulan, ja eri rinkulat menevät toistensa läpi. Siksi solmua voidaan löysätä tai sitä voidaan siirtää, mutta ei rikkoa.

”Skyrmionin ja kvanttisolmun erottaa siitä, että skyrmionissa spinit eivät vain kierry solmulle, vaan myös kondensaatin kvanttivaihe pyörii ympäri”, kertoo Hall.

Jos atomien spinin suunta muuttuu kondensaatin sisällä, kondensaatti käyttäytyy kuin se olisi varattu hiukkanen luonnollisessa magneettikentässä. Solmussa oleva spinien rakenne saa aikaan tällaisen keinotekoisen magneettikentän, joka on täsmälleen erään pallosalaman mallin mukainen magneettikenttä.

Lisätietoja:

Mikko Möttönen, Aalto-yliopisto
[email protected]
puh. 050 5940 950 (GMT +2)

Möttösen tutkimusryhmä Quantum Computing and Devices on osa Suomen Akatemian kansallista tutkimuksen huippuyksikköä Quantum Techonology Finland.

David Hall, Amherst College
[email protected]
puh. +1 413 542 2072 (GMT –5)

Artikkeli:
W. Lee, A.H. Gheorghe, K. Tiurev, T. Ollikainen, M. Möttönen, and D.S. Hall, Synthetic Electromagnetic Knot in a Three-Dimensional Skyrmion, Science Advances 4, eaao3820 (2018).

DOI: 10.1126/sciadv.aao3820
http://advances.sciencemag.org/content/4/3/eaao3820

Muutama valittu synteettisen magneettikentän kenttäviiva, jotka sijaitsevat samassa paikassa skyrmionin kanssa. Kukin kenttäviiva muodostaa suljetun käyrän, joka lävistää kaikki muut kenttäviivakäyrät kerran. Kuva: David Hall.

Aalto-yliopistossa työskentelevät työryhmän jäsenet vasemmalta oikealle: Konstantin Tiurev, Mikko Möttönen ja Tuomas Ollikainen. Kuva: Mikko Raskinen / Aalto-yliopisto.

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Lauri Parkkonen and the family cat, Roosa. Photo: Lauri Parkkonen, Aalto, University.
Mediatiedotteet Julkaistu:

Mitä koirien ja kissojen aivoissa tapahtuu? Uusi kuvantamismenetelmä selvittää lemmikkien mielen saloja

Aalto-yliopiston professori Lauri Parkkosen ryhmä on vuosia kehittänyt kvanttioptisia antureita aivomagneettikäyrän eli magnetoenkefalografian (MEG) mittaamiseen. Toisin kuin perinteisessä MEG-laitteessa, jossa hyvin kylmässä toimivat suprajohtavat anturit vaativat ympärilleen senttimetrejä paksun lämpöeristeen, nämä uudet huoneenlämpötilassa toimivat anturit voidaan tuoda suoraan pään pinnalle. Tämä mahdollistaa entistä tarkemmat aivomagneettikäyrien mittaukset. MEG-kuvantaminen on tutkittavalle kivutonta ja turvallista.
Kuvaa laitteittosta Aalto-yliopsiton Kylmälaboratoriossa.
Mediatiedotteet Julkaistu:

Ikuinen liike on mahdollista – Aalto-yliopiston Kylmälaboratoriossa havainnoitiin kahden fysiikan lait haastavan aikakiteen välistä vuorovaikutusta

Aikakiteet ovat aineen olomuoto, jossa hiukkaset liikkuvat ikuisesti toistuvassa rytmissä ilman ulkopuolista energiaa. Tutkijat onnistuivat luomaan Aalto-yliopiston Kylmälaboratoriossa kaksi aikakidettä ja tarkkailemaan niiden välistä vuorovaikutusta. Tulevaisuudessa aikakiteitä voi hyödyntää erilaisissa laitteissa, kuten kvanttitietokoneiden muistina.
Valkoinen laboratoriotakki sekä analyysityökalu, jolla voidaan mitata veripisarasta särkylääkkeen pitoisuus.
Mediatiedotteet Julkaistu:

Kannettava ja nopea analysointityökalu voi mullistaa kipulääkkeiden diagnostiikkamarkkinat

Aalto-yliopistosta ponnistanut startup-yritys Fepod Oy Ltd on kehittänyt diagnoosimenetelmän, jolla potilaan veren kipulääkepitoisuus voidaan selvittää nopeasti ja edullisesti suoraan hoitopaikalla.
Yhdistelmäkuva, jossa näkyy revontulia, Maa, mittauksia.
Mediatiedotteet Julkaistu:

Suomi 100 -satelliitti teki sen, mihin aiemmin pystyivät vain paljon suuremmat: kuvasi ja tutki revontulia

Revontulialueen tutkiminen auttaa esimerkiksi turvallisten tietoliikenneyhteyksien kehittämisessä.