Nobelistin ennustama uudenlainen kvanttispinneste valmistettiin ensimmäistä kertaa

Saavutus on merkittävä askel kohti niin kutsuttujen topologisten kvanttitietokoneiden rakentamista.
Kupari-ionien magneettisesti järjestäytynyt neliörakenne. Rakennetta räätälöimällä saatiin muodostettua kvanttispinneste. Vastaavaa rakennetta toisin muokkaamalla luodaan korkean lämpötilan suprajohteita. Kuva: Otto Mustonen

Fysiikan nobelisti Paul W. Anderson esitti vuonna 1987 korkean lämpötilan suprajohtavuuden eli sähkövastuksen katoamisen liittyvän eksoottiseen kvanttitilaan, jota nykyään kutsutaan kvanttispinnesteeksi. Magneettiset materiaalit koostuvat hyvin pienistä magneeteista, pienimmillään yksittäisistä elektroneista, ja niiden voimakkuutta ja suuntaa kuvaa magneettinen momentti. Kvanttispinnesteissä magneettiset momentit käyttäytyvät nesteen tavoin eivätkä jähmety tai järjestäydy edes absoluuttisessa nollapisteessä. Näitä kvanttitiloja tutkitaan lupaavina materiaaleina uudenlaisiin niin kutsuttuihin topologisiin kvanttitietokoneisiin, joiden toiminta perustuu hiukkasmaisiin viritystiloihin, joita on kvanttispinnesteissä. Topologisen kvanttitietokoneen erityispiirteenä on suuren laskentatehon lisäksi korkea virheensietokyky, joka mahdollistaa tietokoneen koon kasvattamisen. Topologisiin kvanttitietokoneisiin soveltuvia kvanttispinnesteitä tunnetaan kuitenkin vain muutamia.

Aallossa kehitetty tapa muokata materiaalien magnetismia mahdollisti uuden kvanttispinnesteen valmistamisen

Nyt Aalto-yliopiston, Brazilian Center for Research in Physicsin (CBPF), Braunschweigin teknillisen yliopiston ja Nagoyan yliopiston tutkijat ovat valmistaneet ensimmäistä kertaa Andersonin ennustaman suprajohteenkaltaisen kvanttispinnesteen. Tämä on tärkeä askel suprajohteiden ja kvanttimateriaalien ymmärtämisessä. Kvanttispinnesteen valmistamisen mahdollisti Aallon kemistien kehittämä uusi tapa räätälöidä magneettisten materiaalien ominaisuuksia. Tutkimuksen tulokset on julkaistu Nature Communications -julkaisussa.

Korkean lämpötilan suprajohteet ovat kuparioksideja, joissa kupari-ionit muodostavat neliörakenteen siten, että vierekkäiset magneettiset momentit osoittavat vastakkaisiin suuntiin.  Kun tätä rakennetta häiritään muuttamalla kuparin hapetusastetta, materiaali muuttuu suprajohtavaksi. Nyt julkaistussa uudessa tutkimuksessa tällaisen neliörakenteen magneettisia vuorovaikutuksia muokattiin d10 ja d0 elektronirakenteen ioneilla, jolloin materiaali muuttui kvanttispinnesteeksi. 

”Tätä uutta d10/d0 -menetelmää voidaan jatkossa hyödyntää monissa muissakin magneettisissa materiaaleissa mukaan lukien erilaiset kvanttimateriaalit”, visioi Aalto-yliopiston tohtorikoulutettava Otto Mustonen.

Saumatonta yhteistyötä

Kvanttispinnesteiden kokeellinen havaitseminen on hankalaa ja vaatii mittavaa tutkimusinfrastruktuuria.

”Hyödynsimme tutkimuksessa muon spin -spektroskopiaa, joka perustuu hyvin lyhytikäisten elektroninkaltaisten alkeishiukkasten eli myonien vuorovaikutukseen tutkittavan materiaalin kanssa. Menetelmällä voidaan havaita kvanttimateriaalien erittäin heikkoja magneettikenttiä”, kertoo Braunschweigin teknillisen yliopiston professori F. Jochen Litterst. Mittaukset suoritettiin Paul Scherrer Instituutissa Sveitsissä.

Tutkimuksessa käytetty muon spin -spektrometri Paul Scherrer Instituutissa Sveitsissä. Tutkittava näyte asetetaan keskellä sijaitsevaan kryostaattiin, ja myonisuihku ohjataan siihen takavasemmalta. Kuva: Otto Mustonen

”Huippuoluokan tutkimuslaitteiden lisäksi tutkimus vaatii myös kemistien ja fyysikoiden välistä saumatonta yhteistyötä”, painottaa Aalto-professori Maarit Karppinen. ”Samanlaista kansainvälistä monitieteistä lähestymistapaa tarvitaan jatkossakin, jotta nyt vauhtia saanut kvanttispinnesteiden tutkimus johtaisi meidät topologisen kvanttitietokoneen jäljille.”

Lisätietoja:

Otto Mustonen
[email protected]

Aalto-professori Maarit Karppinen
[email protected]
p. 050 384 1726

Artikkeli:

O. Mustonen, S. Vasala, E. Sadrollahi, K. P. Schmidt, C. Baines, H. C. Walker, I. Terasaki, F. J. Litterst, E. Baggio-Saitovitch & M. Karppinen, Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet perovskite induced by d10–d0 cation mixing, Nature Communications volume 9, Article number: 1085 (2018)

DOI:10.1038/s41467-018-03435-1
http://www.nature.com/articles/s41467-018-03435-1

 

Lisää tästä aiheesta

Screenshot from Interactive Diorama - Rembrandt 1632
Yhteistyö, Tiedotteet, Tutkimus ja taide, Yliopisto Julkaistu:

Haluatko kokea, millaista oli anatomialuennolla vuonna 1632?

Virtuaalitodellisuussimulaatiossa voi sukeltaa Rembrandtin kuuluisaan maalaukseen ja pelinäyttelyssä ihailla opiskelijoiden, tutkijoiden ja taiteilijoiden uusimpia töitä.
Wood.
Yhteistyö, Tutkimus ja taide Julkaistu:

Metsä ja innovaatiot toivat Aalto-yliopistoon yli 30 suurlähettilästä

Kestävyys, vastuullisuus ja ilmastonmuutoksen torjunta ovat tärkeä osa Suomen kuvaa maailmalla.
Kuva: Tuomas Uusheimo.
Tutkimus ja taide Julkaistu:

Aalto-yliopisto isännöi EURO2022-konferenssin noin 2500 operaatiotutkijalle

Kesän 2022 konferenssin järjestää Suomen operaatiotutkimusseura yhteistyössä Aalto-yliopiston operaatiotutkimuskeskuksen (ACOR) sekä Aalto-yliopiston matematiikan ja systeemianalyysin ja tieto- ja palvelujohtamisen laitosten kanssa.
Falling Walls
Tutkimus ja taide Julkaistu:

Voita matka Berliinin Falling Walls –pitchauskilpailuun

Suomen kilpailu järjestetään Design Factorylla Otaniemessä 19. syyskuuta. Ilmoittaudu mukaan 5. syyskuuta mennessä.
  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu